RecombiMAb anti-mouse PD-1 (CD279) (LALA-PG)
(switched from rat IgG2a)
Product Details
The RMP1-14-CP153 monoclonal antibody is a chimeric version of the original RMP1-14 antibody. The variable domain sequences are identical to the original RMP1-14 but the constant region sequences have been switched from rat IgG2a to mouse IgG2a. The RMP1-14-CP153 antibody also contains a LALA-PG mutation in the Fc fragment rendering it unable to bind to endogenous Fcγ receptors. RMP1-14-CP153 reacts with mouse PD-1 (programmed death-1) also known as CD279. PD-1 is a 50-55 kDa cell surface receptor encoded by the Pdcd1 gene that belongs to the CD28 family of the Ig superfamily. PD-1 is transiently expressed on CD4 and CD8 thymocytes as well as activated T and B lymphocytes and myeloid cells. PD-1 expression declines after successful elimination of antigen. Additionally, Pdcd1 mRNA is expressed in developing B lymphocytes during the pro-B-cell stage. PD-1ās structure includes a ITIM (immunoreceptor tyrosine-based inhibitory motif) suggesting that PD-1 negatively regulates TCR signals. PD-1 signals via binding its two ligands, PD-L1 and PD-L2 both members of the B7 family. Upon ligand binding, PD-1 signaling inhibits T-cell activation, leading to reduced proliferation, cytokine production, and T-cell death. Additionally, PD-1 is known to play key roles in peripheral tolerance and prevention of autoimmune disease in mice as PD-1 knockout animals show dilated cardiomyopathy, splenomegaly, and loss of peripheral tolerance. Induced PD-L1 expression is common in many tumors including squamous cell carcinoma, colon adenocarcinoma, and breast adenocarcinoma. PD-L1 overexpression results in increased resistance of tumor cells to CD8 T cell mediated lysis. In mouse models of melanoma, tumor growth can be transiently arrested via treatment with antibodies which block the interaction between PD-L1 and its receptor PD-1. For these reasons anti-PD-1 mediated immunotherapies are currently being explored as cancer treatments.Specifications
Isotype | Mouse IgG2a,Ā Īŗ |
---|---|
Recommended Isotype Control(s) | RecombiMAb mouse IgG2a (LALA-PG) isotype control, anti-hen egg lysozyme |
Recommended Dilution Buffer | InVivoPure pH 7.0 Dilution Buffer |
Conjugation | This product is unconjugated. Conjugation is available via our Antibody Conjugation Services. |
Mutations | LALA-PG |
Immunogen | Syrian Hamster BKH cells transfected with mouse PD-1 cDNA |
Reported Applications |
in vivo blocking of PD-1/PD-L signaling* *Reported for the original rat IgG2a RMP1-14 antibody |
Formulation |
PBS, pH 7.0 Contains no stabilizers or preservatives |
Endotoxin |
<1EU/mg (<0.001EU/μg) Determined by LAL gel clotting assay |
Aggregation |
<5% Determined by DLS |
Purity |
>95% Determined by SDS-PAGE |
Sterility | 0.2 µm filtration |
Production | Purified from CHO cell supernatant in an animal free facility |
Purification | Protein G |
Molecular Weight | 150 kDa |
Murine Pathogen Tests |
Ectromelia/Mousepox Virus: Negative Hantavirus: Negative K Virus: Negative Lactate Dehydrogenase-Elevating Virus: Negative Lymphocytic Choriomeningitis virus: Negative Mouse Adenovirus: Negative Mouse Cytomegalovirus: Negative Mouse Hepatitis Virus: Negative Mouse Minute Virus: Negative Mouse Norovirus: Negative Mouse Parvovirus: Negative Mouse Rotavirus: Negative Mycoplasma Pulmonis: Negative Pneumonia Virus of Mice: Negative Polyoma Virus: Negative Reovirus Screen: Negative Sendai Virus: Negative Theilerās Murine Encephalomyelitis: Negative |
Storage | The antibody solution should be stored at the stock concentration at 4°C. Do not freeze. |
See the references for the original rat IgG2a RMP1-14 antibody (https://bioxcell.com/bp0146).
- Immunology and Microbiology,
Combination of HDAC inhibition and cytokine enhances therapeutic HPV vaccine therapy.
In Journal for Immunotherapy of Cancer on 2 May 2025 by Poppe, L. K., Roller, N., et al.
Human papillomavirus (HPV)-associated malignancies continue to present a major health concern despite the development of prophylactic vaccines. Standard therapies offer limited benefit to patients with advanced-stage disease. Despite improved outcomes with programmed cell death protein-1 (PD-1) targeted therapies, treatment resistance and modest response rates highlight a significant unmet need to develop novel therapies for these patients. PDS0101 (designated HPV vaccine) is a liposomal nanoparticle HPV16-specific therapeutic vaccine that has been shown to generate strong HPV-specific responses in preclinical and clinical studies. Here we assess the efficacy of this HPV vaccine in combination with the tumor-targeting immunocytokine NHS-IL12 (PDS01ADC), plus either αPD-1 or the class I histone deacetylase inhibitor Entinostat. Mice bearing HPV16+, αPD-1 refractory TC-1 and mEER tumors were treated with HPV vaccine, NHS-IL12, and either αPD-1 or Entinostat to determine antitumor efficacy and survival benefits. A comprehensive analysis of the tumor microenvironment was performed using flow cytometry, multiplex immunofluorescence, chemokine and cytokine assessment, and single-cell RNA sequencing with T-cell receptor (TCR) enrichment. Combination of HPV vaccine and NHS-IL12 with either Entinostat or αPD-1 yielded significant antitumor activity and prolonged survival in αPD-1 refractory models of HPV16+ cancer, with superior activity employing Entinostat versus αPD-1 combination. Entinostat triple therapy increased overall and HPV16-specific tumor CD8+ T-cell infiltration with heightened cytotoxicity. TCR sequencing revealed a CD8+ T-cell clone unique to vaccine-treated cohorts, which displayed an enriched cytotoxic transcriptional profile with triple therapy. These effects were paralleled by strong differentiation of tumor-associated macrophages (TAMs) towards pro-inflammatory, antitumor M1-like cell states. Single-cell transcriptomic analysis indicated all three agents were required for highest modulation of both CD8+ T cells and TAMs conducive to tumor control. A biomarker signature reflecting the preclinical findings was found to be associated with improved survival in patients with HPV-associated malignancies. Together, these findings provide a rationale for the combination of HPV vaccine, NHS-IL12, and Entinostat in the clinical setting for patients with HPV16-associated malignancies. © Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.