InVivoMAb mouse IgG2a isotype control, unknown specificity

Catalog #BE0085
Product Citations:
171
Clone:
C1.18.4

$172.00 - $4,494.00

$172.00 - $4,494.00

Choose an Option...
  • 100 mg - $4,494.00
  • 50 mg - $3,175.00
  • 25 mg - $2,109.00
  • 5 mg - $630.00
  • 1 mg - $172.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The C1.18.4 monoclonal antibody is ideal for use as a non-reactive isotype-matched control for mouse IgG2a antibodies in most in vivo and in vitro applications.

Specifications

Isotype Mouse IgG2a,Ā Īŗ
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/μg)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_1107771
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
Carmi, Y., et al. (2015). "Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity" Nature 521(7550): 99-104. PubMed

Whereas cancers grow within host tissues and evade host immunity through immune-editing and immunosuppression, tumours are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumours are reliably rejected by host T cells, even when the tumour and host share the same major histocompatibility complex alleles, the most potent determinants of transplant rejection. How such tumour-eradicating immunity is initiated remains unknown, although elucidating this process could provide the basis for inducing similar responses against naturally arising tumours. Here we find that allogeneic tumour rejection is initiated in mice by naturally occurring tumour-binding IgG antibodies, which enable dendritic cells (DCs) to internalize tumour antigens and subsequently activate tumour-reactive T cells. We exploited this mechanism to treat autologous and autochthonous tumours successfully. Either systemic administration of DCs loaded with allogeneic-IgG-coated tumour cells or intratumoral injection of allogeneic IgG in combination with DC stimuli induced potent T-cell-mediated antitumour immune responses, resulting in tumour eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumours and metastases, as well as the injected primary tumours. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumour antigens after culture with allogeneic-IgG-loaded DCs, recapitulating our findings in mice. These results reveal that tumour-binding allogeneic IgG can induce powerful antitumour immunity that can be exploited for cancer immunotherapy.

Nakatsukasa, H., et al. (2015). "The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells" Nat Immunol 16(10): 1077-1084. PubMed

The molecular mechanisms by which signaling via transforming growth factor-beta (TGF-beta) and interleukin 4 (IL-4) control the differentiation of CD4(+) IL-9-producing helper T cells (TH9 cells) remain incompletely understood. We found here that the DNA-binding inhibitor Id3 regulated TH9 differentiation, as deletion of Id3 increased IL-9 production from CD4(+) T cells. Mechanistically, TGF-beta1 and IL-4 downregulated Id3 expression, and this process required the kinase TAK1. A reduction in Id3 expression enhanced binding of the transcription factors E2A and GATA-3 to the Il9 promoter region, which promoted Il9 transcription. Notably, Id3-mediated control of TH9 differentiation regulated anti-tumor immunity in an experimental melanoma-bearing model in vivo and also in human CD4(+) T cells in vitro. Thus, our study reveals a previously unrecognized TAK1-Id3-E2A-GATA-3 pathway that regulates TH9 differentiation.

Bulliard, Y., et al. (2013). "Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies" J Exp Med 210(9): 1685-1693. PubMed

Fc gamma receptor (FcgammaR) coengagement can facilitate antibody-mediated receptor activation in target cells. In particular, agonistic antibodies that target tumor necrosis factor receptor (TNFR) family members have shown dependence on expression of the inhibitory FcgammaR, FcgammaRIIB. It remains unclear if engagement of FcgammaRIIB also extends to the activities of antibodies targeting immunoregulatory TNFRs expressed by T cells. We have explored the requirement for activating and inhibitory FcgammaRs for the antitumor effects of antibodies targeting the TNFR glucocorticoid-induced TNFR-related protein (GITR; TNFRSF18; CD357) expressed on activated and regulatory T cells (T reg cells). We found that although FcgammaRIIB was dispensable for the in vivo efficacy of anti-GITR antibodies, in contrast, activating FcgammaRs were essential. Surprisingly, the dependence on activating FcgammaRs extended to an antibody targeting the non-TNFR receptor CTLA-4 (CD152) that acts as a negative regulator of T cell immunity. We define a common mechanism that correlated with tumor efficacy, whereby antibodies that coengaged activating FcgammaRs expressed by tumor-associated leukocytes facilitated the selective elimination of intratumoral T cell populations, particularly T reg cells. These findings may have broad implications for antibody engineering efforts aimed at enhancing the therapeutic activity of immunomodulatory antibodies.

Kerzerho, J., et al. (2013). "Programmed cell death ligand 2 regulates TH9 differentiation and induction of chronic airway hyperreactivity" J Allergy Clin Immunol 131(4): 1048-1057, 1057 e1041-1042. PubMed

BACKGROUND: Asthma is defined as a chronic inflammatory disease of the airways; however, the underlying physiologic and immunologic processes are not fully understood. OBJECTIVE: The aim of this study was to determine whether TH9 cells develop in vivo in a model of chronic airway hyperreactivity (AHR) and what factors control this development. METHOD: We have developed a novel chronic allergen exposure model using the clinically relevant antigen Aspergillus fumigatus to determine the time kinetics of TH9 development in vivo. RESULTS: TH9 cells were detectable in the lungs after chronic allergen exposure. The number of TH9 cells directly correlated with the severity of AHR, and anti-IL-9 treatment decreased airway inflammation. Moreover, we have identified programmed cell death ligand (PD-L) 2 as a negative regulator of TH9 cell differentiation. Lack of PD-L2 was associated with significantly increased TGF-beta and IL-1alpha levels in the lungs, enhanced pulmonary TH9 differentiation, and higher morbidity in the sensitized mice. CONCLUSION: Our findings suggest that PD-L2 plays a pivotal role in the regulation of TH9 cell development in chronic AHR, providing novel strategies for modulating adaptive immunity during chronic allergic responses.

Licona-Limon, P., et al. (2013). "Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection" Immunity 39(4): 744-757. PubMed

Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4(+) effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection.

Rayamajhi, M., et al. (2012). "Lung B cells promote early pathogen dissemination and hasten death from inhalation anthrax" Mucosal Immunol 5(4): 444-454. PubMed

Sampling of mucosal antigens regulates immune responses but may also promote dissemination of mucosal pathogens. Lung dendritic cells (LDCs) capture antigens and traffic them to lung-draining lymph nodes (LDLNs) dependent on the chemokine receptor CCR7 (chemokine (C-C motif) receptor 7). LDCs also capture lung pathogens such as Bacillus anthracis (BA). However, we show here that the initial traffic of BA spores from lungs to LDLNs is largely independent of LDCs and CCR7, occurring instead in association with B cells. BA spores rapidly bound B cells in lungs and cultured mouse and human B cells. Binding was independent of the B-cell receptor (BCR). B cells instilled in the lungs trafficked to LDLNs and BA spore traffic to LDLNs was impaired by B-cell deficiency. Depletion of B cells also delayed death of mice receiving a lethal BA infection. These results suggest that mucosal B cells traffic BA, and possibly other antigens, from lungs to LDLNs.

Schafer, H., et al. (2012). "Myofibroblast-induced tumorigenicity of pancreatic ductal epithelial cells is L1CAM dependent" Carcinogenesis 33(1): 84-93. PubMed

Pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis, representing one risk factor for PDAC, are characterized by a marked desmoplasia enriched of pancreatic myofibroblasts (PMFs). Thus, PMFs are thought to essentially promote pancreatic tumorigenesis. We recently demonstrated that the adhesion molecule L1CAM is involved in epithelial-mesenchymal transition of PMF-cocultured H6c7 human ductal epithelial cells and that L1CAM is expressed already in ductal structures of chronic pancreatitis with even higher elevation in primary tumors and metastases of PDAC patients. This study aimed at investigating whether PMFs and L1CAM drive malignant transformation of pancreatic ductal epithelial cells by enhancing their tumorigenic potential. Cell culture experiments demonstrated that in the presence of PMFs, H6c7 cells exhibit a profound resistance against death ligand-induced apoptosis. This apoptosis protection was similarly observed in H6c7 cells stably overexpressing L1CAM. Intrapancreatic inoculation of H6c7 cells together with PMFs (H6c7co) resulted in tumor formation in 7/8 and liver metastases in 6/8 severe combined immunodeficiency (SCID) mice, whereas no tumors and metastases were detectable after inoculation of H6c7 cells alone. Likewise, tumor outgrowth and metastases resulted from inoculation of L1CAM-overexpressing H6c7 cells in 5/7 and 3/7 SCID mice, respectively, but not from inoculation of mock-transfected H6c7 cells. Treatment of H6c7co tumor-bearing mice with the L1CAM antibody L1-9.3/2a inhibited tumor formation and liver metastasis in 100 and 50%, respectively, of the treated animals. Overall, these data provide new insights into the mechanisms of how PMFs and L1CAM contribute to malignant transformation of pancreatic ductal epithelial cells in early stages of pancreatic tumorigenesis.

Libbey, J. E., et al. (2011). "Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection" J Virol 85(14): 6913-6922. PubMed

Cells that can participate in an innate immune response within the central nervous system (CNS) include infiltrating cells (polymorphonuclear leukocytes , macrophages, and natural killer cells) and resident cells (microglia and sometimes astrocytes). The proinflammatory cytokine interleukin-6 (IL-6) is produced by all of these cells and has been implicated in the development of behavioral seizures in the Theiler’s murine encephalomyelitis virus (TMEV)-induced seizure model. The assessment, via PCR arrays, of the mRNA expression levels of a large number of chemokines (ligands and receptors) in TMEV-infected and mock-infected C57BL/6 mice both with and without seizures did not clearly demonstrate the involvement of PMNs, monocytes/macrophages, or NK cells in the development of seizures, possibly due to overlapping function of the chemokines. Additionally, C57BL/6 mice unable to recruit or depleted of infiltrating PMNs and NK cells had seizure rates comparable to those of controls following TMEV infection, and therefore PMNs and NK cells do not significantly contribute to seizure development. In contrast, C57BL/6 mice treated with minocycline, which affects monocytes/macrophages, microglial cells, and PMNs, had significantly fewer seizures than controls following TMEV infection, indicating monocytes/macrophages and resident microglial cells are important in seizure development. Irradiated bone marrow chimeric mice that were either IL-6-deficient mice reconstituted with wild-type bone marrow cells or wild-type mice reconstituted with IL-6-deficient bone marrow cells developed significantly fewer behavioral seizures following TMEV infection. Therefore, both resident CNS cells and infiltrating cells are necessary for seizure development.

Lamere, M. W., et al. (2011). "Regulation of antinucleoprotein IgG by systemic vaccination and its effect on influenza virus clearance" J Virol 85(10): 5027-5035. PubMed

Seasonal influenza epidemics recur due to antigenic drift of envelope glycoprotein antigens and immune evasion of circulating viruses. Additionally, antigenic shift can lead to influenza pandemics. Thus, a universal vaccine that protects against multiple influenza virus strains could alleviate the continuing impact of this virus on human health. In mice, accelerated clearance of a new viral strain (cross-protection) can be elicited by prior infection (heterosubtypic immunity) or by immunization with the highly conserved internal nucleoprotein (NP). Both heterosubtypic immunity and NP-immune protection require antibody production. Here, we show that systemic immunization with NP readily accelerated clearance of a 2009 pandemic H1N1 influenza virus isolate in an antibody-dependent manner. However, human immunization with trivalent inactivated influenza virus vaccine (TIV) only rarely and modestly boosted existing levels of anti-NP IgG. Similar results were observed in mice, although the reaction could be enhanced with adjuvants, by adjusting the stoichiometry among NP and other vaccine components, and by increasing the interval between TIV prime and boost. Importantly, mouse heterosubtypic immunity that had waned over several months could be enhanced by injecting purified anti-NP IgG or by boosting with NP protein, correlating with a long-lived increase in anti-NP antibody titers. Thus, current immunization strategies poorly induce NP-immune antibody that is nonetheless capable of contributing to long-lived cross-protection. The high conservation of NP antigen and the known longevity of antibody responses suggest that the antiviral activity of anti-NP IgG may provide a critically needed component of a universal influenza vaccine.

    • Cancer Research
    • ,
    Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects.

    In Gut Microbes on 1 December 2025 by Liang, Y., Du, M., et al.

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited effective treatment options. Emerging evidence links enriched environment (EE)-induced eustress to PDAC inhibition. However, the underlying mechanisms remain unclear. In this study, we explored the role of gut microbiota in PDAC-suppressive effects of EE. We demonstrated that depletion of gut microbiota with antibiotics abolished EE-induced tumor suppression, while fecal microbiota transplantation (FMT) from EE mice significantly inhibited tumor growth in both subcutaneous and orthotopic PDAC models housed in standard environment. 16S rRNA sequencing revealed that EE enhanced gut microbiota diversity and selectively enriched probiotic Lactobacillus, particularly L. reuteri. Treatment with L. reuteri significantly suppressed PDAC tumor growth and increased natural killer (NK) cell infiltration into the tumor microenvironment. Depletion of NK cells alleviated the anti-tumor effects of L. reuteri, underscoring the essential role of NK cell-mediated immunity in anti-tumor response. Clinical analysis of PDAC patients showed that higher fecal Lactobacillus abundance correlated with improved progression-free and overall survival, further supporting the therapeutic potential of L. reuteri in PDAC. Overall, this study identifies gut microbiota as a systemic regulator of PDAC under psychological stress. Supplementation of psychobiotic Lactobacillus may offer a novel therapeutic strategy for PDAC.

    • Cancer Research
    • ,
    • Stem Cells and Developmental Biology
    Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy.

    In Nature Communications on 30 May 2025 by Ma, J., Zhao, J., et al.

    Metabolic heterogeneity resulting from the intra-tumoral heterogeneity mediates massive adverse outcomes of tumor therapy, including chemotherapeutic resistance, but the mechanisms inside remain largely unknown. Here, we find that the de novo pyrimidine synthesis pathway determines the chemosensitivity. Chemotherapeutic drugs promote the degradation of cytosolic Carbamoyl-phosphate synthetase II, Aspartate transcarbamylase, and Dihydroorotase (CAD), an enzyme that is rate-limiting for pyrimidine synthesis, leading to apoptosis. We also find that CAD needs to be cleaved by caspase-3 on its Asp1371 residue, before its degradation. Overexpressing CAD or mutating Asp1371 to block caspase-3 cleavage confers chemoresistance in xenograft and Cldn18-ATK gastric cancer models. Importantly, mutations related to Asp1371 of CAD are found in tumor samples that failed neoadjuvant chemotherapy and pharmacological targeting of CAD-Asp1371 mutations using RMY-186 ameliorates chemotherapy efficacy. Our work reveals the vulnerability of de novo pyrimidine synthesis during chemotherapy, highlighting CAD as a promising therapeutic target and biomarker. Ā© 2025. The Author(s).

    Interleukin-27 is antiviral at the maternal-fetal interface

    Preprint on BioRxiv : the Preprint Server for Biology on 28 April 2025 by Merlino, M. S., Barksdale, B., et al.

    ABSTRACT Congenital viral infections can have severe consequences for pregnancy and fetal outcomes. Remarkably, the fetal-derived placenta serves as a robust barrier to infection through meticulous regulation by immune effectors and a diverse repertoire of cytokines. Yet, the regulatory roles of many cytokines remain undefined at the maternal-fetal interface. Interleukin 27 (IL-27) is a highly expressed cytokine in the placenta whose functional consequence during congenital infection is unknown. Here, we utilized trophoblast organoids (TO) derived from primary human placentas and a mouse model of congenital viral infection to uncover the functional role of IL-27 signaling during pregnancy. We show that TOs constitutively express IL-27 and its receptor, IL27RA, and demonstrate that IL-27 signaling restricts Zika virus (ZIKV) infection of TOs. Through bulk RNA-sequencing of TOs in the absence and presence of IL-27 signaling, we demonstrate IL-27-mediated upregulation of antiviral genes. Finally, we show that IL-27 signaling is critical within the context of congenital murine ZIKV infection, as IL-27 restricts placental ZIKV burdens and protects against pathologic fetal outcomes early in gestation. These findings collectively demonstrate a novel role for IL-27 in the placenta and establish IL-27 as an innate antiviral defense at the maternal-fetal interface during congenital viral infection.

    • Cancer Research
    • ,
    • Genetics
    Treatment of acute myeloid leukemia models by targeting a cell surface RNA-binding protein.

    In Nature Biotechnology on 23 April 2025 by George, B. M., Eleftheriou, M., et al.

    Immunotherapies for acute myeloid leukemia (AML) and other cancers are limited by a lack of tumor-specific targets. Here we discover that RNA-binding proteins and glycosylated RNAs (glycoRNAs) form precisely organized nanodomains on cancer cell surfaces. We characterize nucleophosmin (NPM1) as an abundant cell surface protein (csNPM1) on a variety of tumor types. With a focus on AML, we observe csNPM1 on blasts and leukemic stem cells but not on normal hematopoietic stem cells. We develop a monoclonal antibody to target csNPM1, which exhibits robust anti-tumor activity in multiple syngeneic and xenograft models of AML, including patient-derived xenografts, without observable toxicity. We find that csNPM1 is expressed in a mutation-agnostic manner on primary AML cells and may therefore offer a general strategy for detecting and treating AML. Surface profiling and in vivo work also demonstrate csNPM1 as a target on solid tumors. Our data suggest that csNPM1 and its neighboring glycoRNA-cell surface RNA-binding protein (csRBP) clusters may serve as an alternative antigen class for therapeutic targeting or cell identification. Ā© 2025. The Author(s).

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Asparagine drives immune evasion in bladder cancer via RIG-I stability and type I IFN signaling.

    In The Journal of Clinical Investigation on 15 April 2025 by Wei, W., Li, H., et al.

    Tumor cells often employ many ways to restrain type I IFN signaling to evade immune surveillance. However, whether cellular amino acid metabolism regulates this process remains unclear, and its effects on antitumor immunity are relatively unexplored. Here, we found that asparagine inhibited IFN-I signaling and promoted immune escape in bladder cancer. Depletion of asparagine synthetase (ASNS) strongly limited in vivo tumor growth in a CD8+ T cell-dependent manner and boosted immunotherapy efficacy. Moreover, clinically approved L-asparaginase (ASNase),synergized with anti-PD-1 therapy in suppressing tumor growth. Mechanistically, asparagine can directly bind to RIG-I and facilitate CBL-mediated RIG-I degradation, thereby suppressing IFN signaling and antitumor immune responses. Clinically, tumors with higher ASNS expression show decreased responsiveness to immune checkpoint inhibitor therapy. Together, our findings uncover asparagine as a natural metabolite to modulate RIG-I-mediated IFN-I signaling, providing the basis for developing the combinatorial use of ASNase and anti-PD-1 for bladder cancer.

    • Cancer Research
    • ,
    • Genetics
    Tumour-wide RNA splicing aberrations generate actionable public neoantigens.

    In Nature on 1 March 2025 by Kwok, D. W., Stevers, N., et al.

    T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity. Ā© 2025. The Author(s).

    • Cancer Research
    ANLN promotes head and neck squamous cell carcinoma progression by upregulating PD-L1 via the ERK-MAPK pathway.

    In IScience on 21 February 2025 by Wang, L., Wang, J., et al.

    Anillin (ANLN) is a highly conserved protein involved in cytokinesis and cytoskeletal remodeling. This study investigates the role of ANLN in head and neck squamous cell carcinoma (HNSCC) progression and its impact on the tumor immune microenvironment, with a focus on the combination of ANLN silencing and anti-programmed cell death protein 1 (PD-1) therapy. Through inĀ vitro and inĀ vivo experiments, along with clinical specimen analysis, we discovered that silencing ANLN not only inhibits the malignant progression of HNSCC but also reduces the activation of the extracellular signal-regulated kinase-mitogen-activated protein kinase (ERK-MAPK) signaling pathway and decreases programmed death ligand-1 (PD-L1) expression. Integrating ANLN silencing with anti-PD-1 monoclonal antibody treatment significantly enhances the activation of infiltrating CD8+ TĀ cells, leading to marked tumor growth suppression. Our findings highlight the potential of ANLN as a therapeutic target in HNSCC, providing a foundation for developing innovative and effective combined treatment strategies. Ā© 2025 The Authors.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Stem Cells and Developmental Biology
    IL-9 signaling redirects CAR T cell fate toward CD8+ memory and CD4+ cycling states, enhancing anti-tumor efficacy

    Preprint on BioRxiv : the Preprint Server for Biology on 4 February 2025 by Castelli, S., Wilson, W. V., et al.

    Summary The success of chimeric antigen receptor T cell therapies targeting solid tumors is limited by the immunosuppressive tumor microenvironment. We demonstrate that endowing CAR T cells with ectopic interleukin-9 (IL-9) signaling by co-expressing an IL-9 receptor, rewires CAR T cell fate under antigen stress to enhance anti-tumor efficacy. In preclinical solid tumor models, IL-9-signaling CAR T cells exhibit increased expansion, persistence, and tumor infiltration, resulting in superior tumor control at significantly lower doses than conventional products. Trajectory and RNA velocity analyses of single-cell RNA sequencing data reveal that IL-9 signaling alters CAR T cell differentiation under antigen stress away from dysfunction, favoring a multipotent transition toward CD8+ cell memory and effector states, and promoting a CD4+ cell proliferative state. Interrogation of transcription factor pathways indicates that IL-9-mediated activation of STAT1 and STAT4 drives the superior phenotype of IL-9-signaling CAR T cells, providing a promising therapeutic strategy for targeting solid cancers.

    SMARCA4 regulates the NK-mediated killing of senescent cells.

    In Science Advances on 17 January 2025 by Reen, V., D'Ambrosio, M., et al.

    Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells. We identified that genetic or pharmacological inhibition of SMARCA4 enhanced senescent cell elimination by NK cells. SMARCA4 expression is elevated during senescence and its inhibition derepresses repetitive elements, inducing the SASP via activation of cGAS/STING and MAVS/MDA5 pathways. Moreover, a PROTAC targeting SMARCA4 synergized with cisplatin to increase the infiltration of CD8 T cells and mature, activated NK cells in an immunocompetent model of ovarian cancer. Our results indicate that SMARCA4 inhibitors enhance NK-mediated surveillance of senescent cells and may represent senotherapeutic interventions for ovarian cancer.

    • ICC-IF
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Anti-Cancer Immune Priming with Beta-Radioligand Therapy and Isoform-Selective Targeting of 4Ig-B7-H3

    Preprint on BioRxiv : the Preprint Server for Biology on 22 December 2024 by Glazer, S. E., Sutton, M. N., et al.

    Radioligand therapy (RLT), a re-emerging oncologic strategy using molecularly-targeted therapeutic radioisotopes, clinically reduces tumor burden and enhances survival for select patients with otherwise unresponsive advanced prostate cancer and neuroendocrine tumors. Developing new approaches to next generation targets and a better understanding of systemic immune effects could broaden the impact of RLT. Aside from contributions to immune checkpoint, B7-H3 ( CD276 ) is an attractive oncologic target because of its widespread and high differential expression across a variety of solid tumors compared to normal tissues. However, B7-H3 has two isoforms: a 4Ig-B7-H3 isoform, the dominant transmembrane protein expressed on tumors and tumor immune microenvironments (TIME), and a 2Ig-B7-H3 isoform, a soluble ectodomain protein, representing a circulating, and in the context of RLT, significant shed (decoy) antigen. To enhance tumor-specific binding and circumvent confounding soluble 2Ig-B7-H3, a novel IgG2a monoclonal antibody (MIL33B) was generated with high affinity for 4Ig-B7-H3 (72 picomolar) and 8- to 18-fold selectivity over soluble 2Ig-B7-H3. Live cell fluorescence microscopy using AF594-labeled MIL33B demonstrated strong membranous localization and target specificity. PET-CT imaging with 89 Zr-labeled MIL33B confirmed robust tumor-selective target binding in vivo in murine xenograft (HeLa cervical) and syngeneic tumor models (4T1 breast, B16F10 melanoma, and CT26 colorectal) expressing human 4Ig-B7-H3. As a single dose beta-emitting systemic RLT therapeutic, 90 Y-labeled MIL33B (100 μCi) produced 53% long-term survival in a 4Ig-B7-H3-dependent manner in an otherwise fatal established CT26 colorectal tumor model. Immunologic analysis showed that 90 Y-MIL33B RLT functioned as an immune priming event, engaging downstream CD8 + T-cell activation and inducing immunological memory in vivo , thus illustrating the potential of systemic beta-RLT to target both primary and metastatic sites. Thus, MIL33B showcases a strategy to selectively target 4Ig-B7-H3 for beta-RLT, warranting further investigation as an immune priming tactic alone or in combination for cancer therapy. Statement of significance Modest antigen expression levels, even if target tissue-selective, combined with ectodomain shedding (soluble decoy antigens) can generally hinder targeted diagnostic and therapeutic strategies, but are especially challenging for radioligand therapy, PET imaging, and in vivo diagnostics wherein high specific activity radioisotopes necessitate use of low masses of biocarrier. Binding, absorption and non-specific tissue deposition of radiolabeled biocarriers by decoy antigens can significantly misdirect systemic radiation, reducing therapeutic efficacy. An antibody development process with a focus aimed at on-target affinity for folded proteins on live cells resulted in a novel picomolar affinity antibody selectively targeting membranous 4Ig-B7-H3 over soluble decoy 2Ig-B7-H3. This antibody shows promise as a transformative systemic beta-radioligand therapy platform for immune priming applications in oncology, and potentially in cardiology, rheumatology, and autoimmunity.

    • Cancer Research
    Copper chelation redirects neutrophil function to enhance anti-GD2 antibody therapy in neuroblastoma.

    In Nature Communications on 12 December 2024 by Rouaen, J. R. C., Salerno, A., et al.

    Anti-disialoganglioside (GD2) antibody therapy has provided clinical benefit to patients with neuroblastoma however efficacy is likely impaired by the immunosuppressive tumor microenvironment. We have previously defined a link between intratumoral copper levels and immune evasion. Here, we report that adjuvant copper chelation potentiates anti-GD2 antibody therapy to confer durable tumor control in immunocompetent models of neuroblastoma. Mechanistic studies reveal copper chelation creates an immune-primed tumor microenvironment through enhanced infiltration and activity of Fc-receptor-bearing cells, specifically neutrophils which are emerging as key effectors of antibody therapy. Moreover, we report copper sequestration by neuroblastoma attenuates neutrophil function which can be successfully reversed using copper chelation to increase pro-inflammatory effector functions. Importantly, we repurpose the clinically approved copper chelating agent Cuprior as a non-toxic, efficacious immunomodulatory strategy. Collectively, our findings provide evidence for the clinical testing of Cuprior as an adjuvant to enhance the activity of anti-GD2 antibody therapy and improve outcomes for patients with neuroblastoma. Ā© 2024. The Author(s).

    Pathogenic role of acyl coenzyme A binding protein (ACBP) in Cushing's syndrome.

    In Nature Metabolism on 1 December 2024 by Pan, H., Tian, A. L., et al.

    Cushing's syndrome is caused by an elevation of endogenous or pharmacologically administered glucocorticoids. Acyl coenzyme A binding protein (ACBP, encoded by the gene diazepam binding inhibitor, Dbi) stimulates food intake and lipo-anabolic reactions. Here we found that plasma ACBP/DBI concentrations were elevated in patients and mice with Cushing's syndrome. We used several methods for ACBP/DBI inhibition in mice, namely, (1) induction of ACBP/DBI autoantibodies, (2) injection of a neutralizing monoclonal antibody, (3) body-wide or hepatocyte-specific knockout of the Dbi gene, (4) mutation of the ACBP/DBI receptor Gabrg2 and (5) injections of triiodothyronine or (6) the thyroid hormone receptor-β agonist resmetirom to block Dbi transcription. These six approaches abolished manifestations of Cushing's syndrome such as increased food intake, weight gain, excessive adiposity, liver damage, hypertriglyceridaemia and type 2 diabetes. In conclusion, it appears that ACBP/DBI constitutes an actionable target that is causally involved in the development of Cushing's syndrome. © 2024. The Author(s).

    • Cancer Research
    Tumor stage-driven disruption of NK cell maturation in human and murine tumors.

    In IScience on 15 November 2024 by Russick, J., Torset, C., et al.

    Natural killer (NK) cells play a pivotal role against cancer, both by direct killing of malignant cells and by promoting adaptive immune response though cytokine and chemokine secretion. In the lung tumor microenvironment (TME), NK cells are scarce and dysfunctional. By conducting single-cell transcriptomic analysis of lung tumors, and exploring pseudotime, we uncovered that the intratumoral maturation trajectory of NK cells is disrupted in a tumor stage-dependent manner, ultimately resulting in the selective exclusion of the cytotoxic subset. Using functional assays, we observed intratumoral NK cell death and a reduction in cytotoxic capacities depending on the tumor stage. Finally, our analyses of human public dataset on lung cancer corroborate these findings, revealing a parallel dysfunctional maturation process of NK cells during tumor progression. These results highlight additional mechanisms by which tumor cells escape from NK cell cytotoxicity, therefore paving the way for tailored therapeutic strategies. Ā© 2024 The Author(s).

    • Biochemistry and Molecular biology
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling.

    In Cellular Molecular Immunology on 1 November 2024 by Nakajima, T., Kanno, T., et al.

    T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells. © 2024. The Author(s).

    • Cancer Research
    Dual-labeled anti-GD2 targeted probe for intraoperative molecular imaging of neuroblastoma.

    In Journal of Translational Medicine on 15 October 2024 by Rosenblum, L. T., Sever, R. E., et al.

    Surgical resection is integral for the treatment of neuroblastoma, the most common extracranial solid malignancy in children. Safely locating and resecting primary tumor and remote deposits of disease remains a significant challenge, resulting in high rates of complications and incomplete surgery, worsening outcomes. Intraoperative molecular imaging (IMI) uses targeted radioactive or fluorescent tracers to identify and visualize tumors intraoperatively. GD2 was selected as an IMI target, as it is highly overexpressed in neuroblastoma and minimally expressed in normal tissue. GD2 expression in neuroblastoma cell lines was measured by flow cytometry. DTPA and IRDye® 800CW were conjugated to anti-GD2 antibody to generate DTPA-αGD2-IR800. Binding affinity (Kd) of the antibody and the non-radiolabeled tracer were then measured by ELISA assay. Human neuroblastoma SK-N-BE(2) cells were surgically injected into the left adrenal gland of 3.5-5-week-old nude mice and the orthotopic xenograft tumors grew for 5 weeks. 111In-αGD2-IR800 or isotype control tracer was administered via tail vein injection. After 4 and 6 days, mice were euthanized and gamma and fluorescence biodistributions were measured using a gamma counter and ImageJ analysis of acquired SPY-PHI fluorescence images of resected organs (including tumor, contralateral adrenal, kidneys, liver, muscle, blood, and others). Organ uptake was compared by one-way ANOVA (with a separate analysis for each tracer/day combination), and if significant, Sidak's multiple comparison test was used to compare the uptake of each organ to the tumor. Handheld tools were also used to detect and visualize tumor in situ, and to assess for residual disease following non-guided resection. 111In-αGD2-IR800 was successfully synthesized with 0.75-2.0 DTPA and 2-3 IRDye® 800CW per antibody and retained adequate antigen-binding (Kd = 2.39 nM for aGD2 vs. 21.31 nM for DTPA-aGD2-IR800). The anti-GD2 tracer demonstrated antigen-specific uptake in mice with human neuroblastoma xenografts (gamma biodistribution tumor-to-blood ratios of 3.87 and 3.88 on days 4 and 6 with anti-GD2 tracer), while isotype control tracer did not accumulate (0.414 and 0.514 on days 4 and 6). Probe accumulation in xenografts was detected and visualized using widely available operative tools (Neoprobe® and SPY-PHI camera) and facilitated detection ofputative residual disease in the resection cavity following unguided resection. We have developed a dual-labeled anti-GD2 antibody-based tracer that incorporates In-111 and IRDye® 800CW for radio- and fluorescence-guided surgery, respectively. The tracer adequately binds to GD2, specifically accumulates in GD2-expressing xenograft tumors, and enables tumor visualization with a hand-held NIR camera. These results encourage the development of 111In-αGD2-IR800 for future use in children with neuroblastoma, with the goal of improving patient safety, completeness of resection, and overall patient outcomes. © 2024. The Author(s).

    • Cancer Research
    • ,
    • Immunology and Microbiology
    A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies.

    In Cell Reports Medicine on 15 October 2024 by Wu, J., Bloch, N., et al.

    The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Benzodiazepines compromise the outcome of cancer immunotherapy.

    In Oncoimmunology on 9 October 2024 by MontƩgut, L., Derosa, L., et al.

    Acyl CoA binding protein (ACBP, which is encoded by diazepam binding inhibitor, DBI) acts on the gamma-amino butyric acid (GABA) receptor type A via a specific binding site that is shared by diazepam and other benzodiazepines. Both ACBP/DBI and benzodiazepines act as positive allosteric modulators, hence increasing GABA effects on this receptor. Recently, we found that ACBP/DBI acts as an endogenous immunosuppressor, meaning that its antibody-mediated neutralization has immunostimulatory effects and enhances the efficacy of immunotherapy and chemoimmunotherapy in mouse models. Driven by these considerations, we investigated whether diazepam administration in mice would reverse the beneficial effects of ACBP/DBI neutralization on cancer chemoimmunotherapy. Indeed, diazepam abolished the therapeutic of anti-ACBP/DBI antibodies, supporting the idea that diazepam exerts immunosuppressive properties. Of note, treatment with benzodiazepines was associated with poor clinical responses to chemoimmunotherapy in patients with non-small cell lung cancer (NSCLC) as compared to individuals not receiving any psychotropic drugs. Medication with other psychotropic drugs than benzodiazepines did not compromise the outcome of chemoimmunotherapy, indicating that this immunosuppressive effect was benzodiazepine specific. We conclude that benzodiazepines may confer systemic immunosuppression. This hypothesis requires further epidemiological and clinical confirmation. Ā© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.

    • Cancer Research
    • ,
    • Stem Cells and Developmental Biology
    Perivascular NOTCH3+ Stem Cells Drive Meningioma Tumorigenesis and Resistance to Radiotherapy.

    In Cancer Discovery on 4 October 2024 by Choudhury, A., Cady, M. A., et al.

    Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here, we report that NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor-initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival. Significance: There are no effective systemic therapies to treat meningiomas, and meningioma stem cells are poorly understood. Here, we report perivascular NOTCH3+ stem cells to drive meningioma tumorigenesis and resistance to radiotherapy. Our results identify a conserved mechanism and a therapeutic vulnerability to treat meningiomas that are resistant to standard interventions. ©2024 American Association for Cancer Research.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Iron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer.

    In Cancer Discovery on 4 October 2024 by Sandoval, T. A., Salvagno, C., et al.

    Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771. ©2024 American Association for Cancer Research.

    Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins.

    In Protein Cell on 1 October 2024 by Ma, D., Xie, A., et al.

    Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics. Ā© The Author(s) 2024. Published by Oxford University Press on behalf of Higher Education Press.

1 2 3 4 5 6 7 8 9 10

Related Products