InVivoPlus human IgG1 isotype control

Catalog #BP0297
Product Citations:
12

$820.00 - $5,846.00

$820.00 - $5.00

Choose an Option...
  • 100 mg - $5,846.00
  • 50 mg - $4,133.00
  • 25 mg - $2,746.00
  • 5 mg - $820.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The human IgG1 isotype control antibody is purified from human myeloma serum and is of unknown specificity. This antibody is suitable for use as a non-targeting isotype control in various in vitro and in vivo studies. It can also be used as a negative control in various diagnostic applications such as ELISA, Western blot, immunofluorescence, immunohistochemistry, immunoprecipitation, and flow cytometry. For research use only.

Specifications

Isotype Human IgG1, Īŗ
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin* <1EU/mg (<0.001EU/μg)
Determined by LAL gel clotting assay
Aggregation* <5%
Determined by SEC
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from human myeloma serum
Purification Protein A
RRID AB_2687817
Molecular Weight 150 kDa
Murine Pathogen Tests* Ectromelia/Mousepox Virus: Negative
Hantavirus: Negative
K Virus: Negative
Lactate Dehydrogenase-Elevating Virus: Negative
Lymphocytic Choriomeningitis virus: Negative
Mouse Adenovirus: Negative
Mouse Cytomegalovirus: Negative
Mouse Hepatitis Virus: Negative
Mouse Minute Virus: Negative
Mouse Norovirus: Negative
Mouse Parvovirus: Negative
Mouse Rotavirus: Negative
Mycoplasma Pulmonis: Negative
Pneumonia Virus of Mice: Negative
Polyoma Virus: Negative
Reovirus Screen: Negative
Sendai Virus: Negative
Theiler’s Murine Encephalomyelitis: Negative
Human Pathogen Test Results Hepatitis B Surface Antigen: Negative
Human Immunodeficiency Virus 1 antibodies: Negative
Human Immunodeficiency Virus 2 antibodies: Negative
Hepatitis C Virus antibodies: Negative
* These tests cannot guarantee the absence of infective agents
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
* Additional quality control measures for our InVivoPlusā„¢ products include advanced binding validation, murine pathogen screening, protein aggregation screening, and ultra-low endotoxin levels. The superior quality of our InVivoPlusā„¢ products will meet and exceed the strict demands and rigorous standards required for in vivo research. Learn more about the InVivoPlusā„¢ difference here.

Additional Formats

Li, M., et al. (2019). "Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis" Gut 68(6): 1024-1033. PubMed

OBJECTIVES: Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN: We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS: WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS: ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER: NCT02442414;Pre-results.

    • Cancer Research
    • ,
    Identification of potent biparatopic antibodies targeting FGFR2 fusion-driven cholangiocarcinoma.

    In J Clin Invest on 15 April 2025 by Chaturantabut, S., Oliver, S., et al.

    PubMed

    Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, response rates and durability are limited due to the emergence of resistance, typically involving FGFR2 kinase domain mutations, and to suboptimal dosing, relating to drug adverse effects. Here, we develop biparatopic antibodies targeting the FGFR2 extracellular domain (ECD) as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of bivalent monospecific antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies targeting distinct epitope pairs in FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2 fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, we believe that biparatopic antibodies may serve as an innovative treatment option for patients with FGFR2-altered cholangiocarcinoma.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Dual Targeting for Enhanced Tumor Immunity: Conditionally Active CD28xVISTA Bispecific Antibodies Promote Myeloid-Driven T-Cell Activation

    In bioRxiv on 12 April 2025 by Thisted, T., Smith, F. D., et al.

    • Genetics
    A platform to deliver single and bi-specific Cas9/guide RNA to perturb genes in vitro and in vivo.

    In Mol Ther on 2 October 2024 by Li, Y. J., Chien, S. H., et al.

    PubMed

    Although CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency inĀ vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers inĀ vitro and inĀ vivo with reduced off-target effects. We show that PS-Cas9/gRNA-mediated gene knockout preserves chimeric antigen receptor TĀ cell viability and expansion inĀ vitro and inĀ vivo. PS-Cas9/gRNA mediates gene perturbation in patient-derived tumor organoids and mouse xenograft tumors, leading to potent tumor antitumor effects. Further, HER2 antibody-PS-Cas9/gRNA conjugate selectively perturbs targeted genes in HER2+ ovarian cancer xenografts inĀ vivo. Moreover, we created bi-specific PS-Cas9 with two gRNAs to target two adjacent sequences of the same gene, leading to efficient targeted gene disruption exĀ vivo and inĀ vivo with markedly reduced unintended gene perturbation. Thus, the cell-penetrating PS-Cas9/gRNA can achieve efficient systemic delivery and precision in gene disruption.

    Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation.

    In Mol Ther Methods Clin Dev on 12 September 2024 by Skeeters, S., Bagale, K., et al.

    PubMed

    The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    ISG12a promotes immunotherapy of HBV-associated hepatocellular carcinoma through blocking TRIM21/AKT/β-catenin/PD-L1 axis.

    In iScience on 19 April 2024 by Deng, R., Tian, R., et al.

    PubMed

    Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and β-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.

    VISTA checkpoint inhibition by pH-selective antibody SNS-101 with optimized safety and pharmacokinetic profiles enhances PD-1 response.

    In Nat Commun on 4 April 2024 by Thisted, T., Smith, F. D., et al.

    PubMed

    VISTA, an inhibitory myeloid-T-cell checkpoint, holds promise as a target for cancer immunotherapy. However, its effective targeting has been impeded by issues such as rapid clearance and cytokine release syndrome observed with previous VISTA antibodies. Here we demonstrate that SNS-101, a newly developed pH-selective VISTA antibody, addresses these challenges. Structural and biochemical analyses confirmed the pH-selectivity and unique epitope targeted by SNS-101. These properties confer favorable pharmacokinetic and safety profiles on SNS-101. In syngeneic tumor models utilizing human VISTA knock-in mice, SNS-101 shows in vivo efficacy when combined with a PD-1 inhibitor, modulates cytokine and chemokine signaling, and alters the tumor microenvironment. In summary, SNS-101, currently in Phase I clinical trials, emerges as a promising therapeutic biologic for a wide range of patients whose cancer is refractory to current immunotherapy regimens.

    • Cancer Research
    • ,
    • Endocrinology and Physiology
    • ,
    • Genetics
    • ,
    • Immunology and Microbiology
    Single-cell RNA sequencing reveals enhanced antitumor immunity after combined application of PD-1 inhibitor and Shenmai injection in non-small cell lung cancer.

    In Cell Commun Signal on 10 July 2023 by Yu, D., Yang, P., et al.

    PubMed

    Immune checkpoint inhibitors (ICIs) have altered the clinical management of non-small cell lung cancer (NSCLC). However, the low response rate, severe immune-related adverse events (irAEs), and hyperprogressive disease following ICIs monotherapy require attention. Combination therapy may overcome these limitations and traditional Chinese medicine with immunomodulatory effects provides a promising approach. Shenmai injection (SMI) is a clinically effective adjuvant treatment for cancer with chemotherapy and radiotherapy. Therefore, the combined effects and mechanisms of SMI and programmed death-1 (PD-1) inhibitor against NSCLC was focused on this study.

    • Biochemistry and Molecular biology
    • ,
    • COVID-19
    An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2.

    In EMBO Mol Med on 8 November 2022 by Zhang, L., Narayanan, K. K., et al.

    PubMed

    Monoclonal antibodies targeting the SARS-CoV-2 spike (S) neutralize infection and are efficacious for the treatment of COVID-19. However, SARS-CoV-2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22 .v2.4-IgG1 was previously shown to be effective against SARS-CoV-2 variants when administered intravenously. Here, inhalation of aerosolized sACE22 .v2.4-IgG1 increased survival and ameliorated lung injury in K18-hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE22 .v2.4-IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18-hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE22 .v2.4-IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS-CoV-2 variants.

    • Cardiovascular biology
    Comparative efficacy and mechanism of action of cardiac progenitor cells after cardiac injury.

    In iScience on 19 August 2022 by Gunasekaran, M., Mishra, R., et al.

    PubMed

    Successful cell therapy requires cells to resist the hostile ischemic myocardium, be retained to continue secreting cardioprotective growth factors/exosomes, and resist immunological host responses. Clinically relevant stem/progenitor cells in a rodent model of acute myocardial infarction (MI) demonstrated that neonatal cardiac mesenchymal stromal cells (nMSCs) provide the most robust cardiac functional recovery. Transplanted nMSCs significantly increased the number of tissue reparative macrophages and regulatory T-cells and decreased monocyte-derived inflammatory macrophages and neutrophils in the host myocardium. mRNA microarray and single-cell analyses combined with targeted depletion studies established CD47 in nMSCs as a key molecule responsible for cell retention in the myocardium through an antiphagocytic mechanism regulated by miR34a-5p. Gain and loss-of-function studies demonstrated that miR34a-5p also regulated the production of exosomes and cardioprotective paracrine factors in the nMSC secretome. In conclusion, miR34a-5p and CD47 play an important role inĀ determining the composition of nMSCs' secretome and immune evasion, respectively.

    • Flow cytometry/Cell sorting
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non-small cell lung cancer.

    In Sci Transl Med on 16 March 2022 by Wennerberg, E., Mukherjee, S., et al.

    PubMed

    Most patients with non-small cell lung cancer (NSCLC) do not achieve durable clinical responses from immune checkpoint inhibitors, suggesting the existence of additional resistance mechanisms. Nicotinamide adenine dinucleotide (NAD)-induced cell death (NICD) of P2X7 receptor (P2X7R)-expressing T cells regulates immune homeostasis in inflamed tissues. This process is mediated by mono-adenosine 5'-diphosphate (ADP)-ribosyltransferases (ARTs). We found an association between membranous expression of ART1 on tumor cells and reduced CD8 T cell infiltration. Specifically, we observed a reduction in the P2X7R+ CD8 T cell subset in human lung adenocarcinomas. In vitro, P2X7R+ CD8 T cells were susceptible to ART1-mediated ADP-ribosylation and NICD, which was exacerbated upon blockade of the NAD+-degrading ADP-ribosyl cyclase CD38. Last, in murine NSCLC and melanoma models, we demonstrate that genetic and antibody-mediated ART1 inhibition slowed tumor growth in a CD8 T cell-dependent manner. This was associated with increased infiltration of activated P2X7R+CD8 T cells into tumors. In conclusion, we describe ART1-mediated NICD as a mechanism of immune resistance in NSCLC and provide preclinical evidence that antibody-mediated targeting of ART1 can improve tumor control, supporting pursuit of this approach in clinical studies.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    B7-H3Ɨ4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+ tumor-infiltrating lymphocytes.

    In Sci Adv on 1 January 2021 by You, G., Lee, Y., et al.

    PubMed

    Cancer immunotherapy with 4-1BB agonists has limited further clinical development because of dose-limiting toxicity. Here, we developed a bispecific antibody (bsAb; B7-H3Ɨ4-1BB), targeting human B7-H3 (hB7-H3) and mouse or human 4-1BB, to restrict the 4-1BB stimulation in tumors. B7-H3Ɨm4-1BB elicited a 4-1BB-dependent antitumor response in hB7-H3-overexpressing tumor models without systemic toxicity. BsAb primarily targets CD8 T cells in the tumor and increases their proliferation and cytokine production. Among the CD8 T cell population in the tumor, 4-1BB is solely expressed on PD-1+Tim-3+ "terminally differentiated" subset, and bsAb potentiates these cells for eliminating the tumor. Furthermore, the combination of bsAb and PD-1 blockade synergistically inhibits tumor growth accompanied by further increasing terminally differentiated CD8 T cells. B7-H3Ɨh4-1BB also shows antitumor activity in h4-1BB-expressing mice. Our data suggest that B7-H3Ɨ4-1BB is an effective and safe therapeutic agent against B7-H3-positive cancers as monotherapy and combination therapy with PD-1 blockade.

    • Immunology and Microbiology
    • ,
    • Neuroscience
    • ,
    • Immunodepletion
    Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer's disease.

    In Acta Neuropathol Commun on 4 February 2020 by Roberts, M., Sevastou, I., et al.

    PubMed

    Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.

Related Products