InVivoMAb polyclonal rat IgG

Catalog #BE0094
Product Citations:
24
Clone:
Polyclonal

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The polyclonal rat IgG is purified from rat serum. It is ideal for use as a non-reactive control IgG for polyclonal rat IgG antibodies in most in vivo and in vitro applications.

Specifications

Isotype Rat IgG
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from rat serum
Purification Protein G
RRID AB_1107795
Molecular Weight 150 kDa
Murine Pathogen Tests Ectromelia/Mousepox Virus: Negative
Hantavirus: Negative
K Virus: Negative
Lactate Dehydrogenase-Elevating Virus: Negative
Lymphocytic Choriomeningitis virus: Negative
Mouse Adenovirus: Negative
Mouse Cytomegalovirus: Negative
Mouse Hepatitis Virus: Negative
Mouse Minute Virus: Negative
Mouse Norovirus: Negative
Mouse Parvovirus: Negative
Mouse Rotavirus: Negative
Mycoplasma Pulmonis: Negative
Pneumonia Virus of Mice: Negative
Polyoma Virus: Negative
Reovirus Screen: Negative
Sendai Virus: Negative
Theilerā€™s Murine Encephalomyelitis: Negative
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
Xia, X., et al. (2021). "Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress" Am J Cancer Res 11(3): 916-929. PubMed

Inhibiting the functioning of PD-1/PD-L1 to activate human immune system and improve the prognosis of pancreatic cancer (PC) would provide a significant boost to handling the disease. One research found the expression level of NSG3 was reduced in pediatric pilocytic astrocytoma, so is PC and we found NSG3 could regulate the expression of PD-L1. So NSG3 could become a new target for enhancing the immune response to PC. The GEPIA website was employed to analyze the prognoses in PC patients with different NSG3 levels. Immunohistochemistry (IHC) analysis was applied to detect different levels of NSG3 in para-PC and PC tissues. Cell biological function tests (in vitro) were performed and a subcutaneous nude mice tumor model (in vivo) was established to verify the effect of NSG3 on PC. Immunoblotting and RT-qPCR were utilized to demonstrate the inhibiting effect of NSG3 on PD-L1 through regulating Erk1/2 phosphorylation. A subcutaneous C57BL/6 tumor mice model was established to assess the possibility of a synergistic effect of NSG3 expression and the use of an anti-PD-L1 antibody on PC. PC tissues had decreased NSG3 expression levels, which led to poor prognosis. Overexpressing NSG3 suppressed proliferation, invasion and migration capacities of PC cells. On the contrary, knocking-down NSG3 prompted PC malignancy whether in vivo or in vitro. Importantly, NSG3 prevented Erk1/2 phosphorylation to inhibit PD-L1 expression. Additionally, NSG3 and an immune checkpoint inhibitor anti-PD-1 antibody acted synergistically, which enhanced the efficacy of the inhibitor. NSG3 inhibited PD-L1 expression by suppressing Erk1/2 phosphorylation to improve the immune response to PC. NSG3 is, therefore, a potential new diagnostic and prognostic marker, particularly useful in immune checkpoint blockade therapy.

Teijeira, Ɓ., et al. (2020). "CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity" Immunity 52(5): 856-871.e858. PubMed

Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8(+) T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.

Bryant-Hudson, K. M. and D. J. Carr. (2012). "PD-L1-expressing dendritic cells contribute to viral resistance during acute HSV-1 infection" Clin Dev Immunol 2012: 924619. PubMed

The inhibitory receptor, Programmed Death 1 (PD-1), and its ligands (PD-L1/PD-L2) are thought to play a role in immune surveillance during chronic viral infection. The contribution of the receptor/ligand pair during an acute infection is less understood. To determine the role of PD-L1 and PD-L2 during acute ocular herpes simplex virus type 1 (HSV-1) infection, HSV-1-infected mice administered neutralizing antibody to PD-L1 or PD-L2 were assessed for viral burden and host cellular immune responses. Virus titers were elevated in cornea and trigeminal ganglia (TG) of anti-PD-L1-treated mice which corresponded with a reduced number of CD80-expressing dendritic cells, PD-L1(+) dendritic cells, and HSV-1-specific CD8(+) T cells within the draining (mandibular) lymph node (MLN). In contrast, anti-PD-L2 treatment had no effect on viral replication or changes in the MLN population. Notably, analysis of CD11c-enriched MLN cells from anti-PD-L1-treated mice revealed impaired functional capabilities. These studies indicate PD-L1-expressing dendritic cells are important for antiviral defense during acute HSV-1 infection.

Turnquist, H. R., et al. (2011). "IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival" J Immunol 187(9): 4598-4610. PubMed

IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-gamma(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.

Carlson, M. J., et al. (2009). "In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations" Blood 113(6): 1365-1374. PubMed

The morbidity and mortality associated with graft-host-disease (GVHD) is a significant obstacle to the greater use of allogeneic stem cell transplantation. Donor T cells that predominantly differentiate into TH1/Tc1 T cells and generate pro-inflammatory cytokines such as interferon-gamma (IFN-gamma) mediate GVHD. Although numerous studies have described a pathogenic role for IFN-gamma, multiple reports have demonstrated that the lack of IFN-gamma paradoxically exacerbated GVHD lethality. This has led to speculation that another subset of T cells may significantly contribute to GVHD mortality. Several groups have demonstrated a new lineage of CD4+ T helper cell development distinct from TH1 or TH2 differentiation. This lineage is characterized by production of interleukin (IL)-17A, IL-17F, IL-22, and IL-21 and has been termed TH17 cells. Here, we demonstrate that a highly purified population of TH17 cells is capable of inducing lethal GVHD, hallmarked by extensive pathologic cutaneous and pulmonary lesions. Upon transfer, these cells migrate to and expand in GVHD target organs and secondary lymphoid tissues. Finally, we demonstrate differential roles for tumor necrosis factor-alpha (TNF-alpha) and IL-17A in the clinical manifestations of GVHD induced by TH17 cells. Our studies demonstrate that cells other than TH1/Tc1 can mediate acute GVHD.

    • Neuroscience
    • ,
    Oral pathogens exacerbate Parkinson's disease by promoting Th1 cell infiltration in mice.

    In Microbiome on 17 November 2023 by Bai, X. B., Xu, S., et al.

    PubMed

    Parkinson's disease (PD) is a common chronic neurological disorder with a high risk of disability and no cure. Periodontitis is an infectious bacterial disease occurring in periodontal supporting tissues. Studies have shown that periodontitis is closely related to PD. However, direct evidence of the effect of periodontitis on PD is lacking. Here, we demonstrated that ligature-induced periodontitis with application of subgingival plaque (LIP-SP) exacerbated motor dysfunction, microglial activation, and dopaminergic neuron loss in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. The 16S rRNA gene sequencing revealed that LIP-SP induced oral and gut dysbiosis. Particularly, Veillonella parvula (V. parvula) and Streptococcus mutans (S. mutans) from oral ligatures were increased in the fecal samples of MPTPā€‰+ā€‰LIP-SP treated mice. We further demonstrated that V. parvula and S. mutans played crucial roles in LIP-SP mediated exacerbation of motor dysfunction and neurodegeneration in PD mice. V. parvula and S. mutans caused microglial activation in the brain, as well as T helper 1 (Th1) cells infiltration in the brain, cervical lymph nodes, ileum and colon in PD mice. Moreover, we observed a protective effect of IFNĪ³ neutralization on dopaminergic neurons in V. parvula- and S. mutans-treated PD mice. Our study demonstrates that oral pathogens V. parvula and S. mutans necessitate the existence of periodontitis to exacerbate motor dysfunction and neurodegeneration in MPTP-induced PD mice. The underlying mechanisms include alterations of oral and gut microbiota, along with immune activation in both brain and peripheral regions. Video Abstract. Ā© 2023. The Author(s).

    • COVID-19
    Contrasting roles of MERS-CoV and SARS-CoV-2 internal proteins in pathogenesis in mice.

    In mBio on 26 October 2023 by Wong, L. R., Odle, A., et al.

    PubMed

    Betacoronaviruses encode an internal (I) gene via an alternative reading frame within the nucleocapsid gene, called ORF8b for Middle-East respiratory syndrome coronavirus (MERS-CoV) and ORF9b for severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Previous reports suggested that proteins 8b and 9b are involved in evading multiple innate immune signaling pathways. However, their roles in mediating pathogenesis in infected animals have not been determined. In this study, we abrogated the expression of protein 8b in MERS-CoV and protein 9b in SARS-CoV-2. Using mouse models of MERS-CoV and SARS-CoV-2 infection, we found that MERS-CoV lacking protein 8b expression was more virulent, while SARS-CoV-2 lacking protein 9b expression was attenuated compared with the respective wild-type viruses. Upon further analysis, we detected increased levels of type I interferon and enhanced infiltration of immune cells to the lungs of mice infected with MERS-CoV lacking protein 8b expression. These data suggest that the I protein of MERS-CoV plays a role in limiting pathogenesis while that of SARS-CoV-2 enhances disease severity. IMPORTANCE The function of betacoronavirus internal protein has been relatively understudied. The earliest report on the internal protein of mouse hepatitis virus suggested that the internal protein is a structural protein without significant functions in virus replication and virulence. However, the internal proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus, and SARS-CoV-2 have been shown to evade immune responses. Despite the reported functions of the internal protein in these highly pathogenic human coronaviruses, its role in mediating pathogenesis in experimentally infected animals has not been characterized. Our data indicated that despite the similar genomic location and expression strategy of these internal proteins, their effects on virulence are vastly different and virus specific, highlighting the complexity between host-virus interaction and disease outcome.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Hyperglycosylation of prosaposin in tumor DCs promotes immune escape in cancer

    Preprint on BioRxiv : the Preprint Server for Biology on 14 June 2023 by Sharma, P., Zhang, X., et al.

    PubMed

    Tumors develop strategies to evade immunity by suppressing antigen presentation. Here, we show that prosaposin drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor DCs leads to cancer immune escape. We found that lysosomal prosaposin and its single saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, TGF-Ī² induced hyperglycosylation of prosaposin and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. In melanoma patients, we found similar prosaposin hyperglycosylation in tumor-associated DCs, and reconstitution with prosaposin rescued activation of tumor-infiltrating T cells. Targeting tumor DCs with recombinant prosaposin triggered cancer protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of prosaposin in tumor immunity and escape and introduce a novel principle of prosaposin-based cancer immunotherapy. One Sentence Summary Prosaposin facilitates antigen cross-presentation and tumor immunity and its hyperglycosylation leads to immune evasion.

    • Cancer Research
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    • ,
    • In Vivo
    • ,
    • Mus musculus (House mouse)
    Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor TĀ cell responses.

    In Cancer Cell on 10 October 2022 by Mandula, J. K., Chang, S., et al.

    PubMed

    Activation of unfolded protein responses (UPRs) in cancer cells undergoing endoplasmic reticulum (ER) stress promotes survival. However, how UPR in tumor cells impacts anti-tumor immune responses remains poorly described. Here, we investigate the role of the UPR mediator pancreatic ER kinase (PKR)-like ER kinase (PERK) in cancer cells in the modulation of anti-tumor immunity. Deletion of PERK in cancer cells or pharmacological inhibition of PERK in melanoma-bearing mice incites robust activation of anti-tumor TĀ cell immunity and attenuates tumor growth. PERK elimination in ER-stressed malignant cells triggers SEC61Ī²-induced paraptosis, thereby promoting immunogenic cell death (ICD) and systemic anti-tumor responses. ICD induction in PERK-ablated tumors stimulates type I interferon production in dendritic cells (DCs), which primes CCR2-dependent tumor trafficking of common-monocytic precursors and their intra-tumor commitment into monocytic-lineage inflammatory Ly6C+CD103+ DCs. These findings identify how tumor cell-derived PERK promotes immune evasion and highlight the potential of PERK-targeting therapies in cancer immunotherapy. Copyright Ā© 2022 Elsevier Inc. All rights reserved.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion.

    In Nature Communications on 21 March 2022 by Jiang, N., Xie, B., et al.

    PubMed

    Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A-/-, CPT2-/-, ACAD9-/- cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-ĪŗB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy. Ā© 2022. The Author(s).

    • IP
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    TGF-Ī²-mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures.

    In Immunity on 11 January 2022 by Chaurio, R. A., Anadon, C. M., et al.

    PubMed

    The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-Ī²-mediated repression of SATB1 enhanced Tfh differentiation of human TĀ cells. Mechanistically, high Icos expression in Satb1-/- CD4+ TĀ cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses inĀ vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ TĀ cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ TĀ cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-Ī²-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.Copyright Ā© 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Immu-depl
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    OX40 agonist combined with irreversible electroporation synergistically eradicates established tumors and drives systemic antitumor immune response in a syngeneic pancreatic cancer model.

    In American Journal of Cancer Research on 13 July 2021 by Zhang, Q. W., Guo, X. X., et al.

    PubMed

    In this study, we intended to explore a novel combination treatment scheme for pancreatic cancer, using irreversible electroporation (IRE) and OX40 agonist. We further aimed to investigate the capacity and mechanism of this combination treatment using an in vivo mouse aggressive pancreatic cancer model. To this end, mice subcutaneously injected with KPC1199 pancreatic tumor cells were treated with IRE, followed by intraperitoneal injection of OX40 agonist. Tumor growth and animal survival were observed. Flow cytometry analysis, immunohistochemistry, and immunofluorescence were used to evaluate the immune cell populations within the tumors. The tumor-specific immunity was assessed using ELISpot assay. Besides, the cytokine patterns both in serum and tumors were identified using Luminex assay. After combination therapy with IRE and OX40 agonist, 80% of the mice completely eradicated the established subcutaneous tumors, during the 120 days observation period. Rechallenging these tumor-free mice at day 120 with KPC1199 tumor cells leads to complete resistance to tumor growth, suggesting that the combination therapy generated long-term-specific antitumor immune memory. Moreover, combination therapy significantly delayed the growth of contralateral untreated tumors, and significantly prolonged animal survival, suggesting that a potent systematic anti-tumor immunity was induced by combination therapy. Mechanically, combination therapy amplified antitumor immune response induced by IRE, as manifested by the increased quality and quantity of CD8+ T cells trigged by IRE. Together, these results provide strong evidence for the clinical assessment of the combination of IRE and OX40 agonist in patients with pancreatic cancer. AJCR Copyright Ā© 2021.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    CD8+ T cell immunity blocks the metastasis of carcinogen-exposed breast cancer.

    In Science Advances on 1 June 2021 by Li, K., Li, T., et al.

    PubMed

    The link between carcinogen exposure and cancer immunogenicity is unclear. Single exposure to 12-dimethylbenz[a]anthracene (DMBA) at puberty accelerated spontaneous breast carcinogenesis in mouse mammary tumor virus-polyoma middle tumor-antigen transgenic (MMTV-PyMTtg or PyMT) and MMTV-Her2/neutg (Her2) mice. Paradoxically, DMBA-treated PyMT and Her2 animals were protected from metastasis. CD8+ T cells significantly infiltrated DMBA-exposed breast cancers. CD8+ T cell depletion resulted in severe lung and liver metastasis in DMBA-treated PyMT mice. Besides increasing tumor mutational burden, DMBA exposure up-regulated Chemokine (C-C motif) ligand 21 (CCL21) in cancer cells and heightened antigen presentation. CCL21 injection suppressed breast cancer growth, and CCL21 receptor deletion attenuated T cell immunity against cancer metastasis in DMBA-treated PyMT animals. CCL21 expression correlated with increased mutational burden and cytolytic activity across human cancers. Higher CCL21 levels correlated with increased CD8+ T cell infiltrates in human breast cancer and predicted lower breast cancer distant recurrence rate. Collectively, carcinogen exposure induces immune-activating factors within cancer cells that promote CD8+ T cell immunity against metastasis.Copyright Ā© 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress.

    In American Journal of Cancer Research on 2 April 2021 by Xia, X., Li, R., et al.

    PubMed

    Inhibiting the functioning of PD-1/PD-L1 to activate human immune system and improve the prognosis of pancreatic cancer (PC) would provide a significant boost to handling the disease. One research found the expression level of NSG3 was reduced in pediatric pilocytic astrocytoma, so is PC and we found NSG3 could regulate the expression of PD-L1. So NSG3 could become a new target for enhancing the immune response to PC. The GEPIA website was employed to analyze the prognoses in PC patients with different NSG3 levels. Immunohistochemistry (IHC) analysis was applied to detect different levels of NSG3 in para-PC and PC tissues. Cell biological function tests (in vitro) were performed and a subcutaneous nude mice tumor model (in vivo) was established to verify the effect of NSG3 on PC. Immunoblotting and RT-qPCR were utilized to demonstrate the inhibiting effect of NSG3 on PD-L1 through regulating Erk1/2 phosphorylation. A subcutaneous C57BL/6 tumor mice model was established to assess the possibility of a synergistic effect of NSG3 expression and the use of an anti-PD-L1 antibody on PC. PC tissues had decreased NSG3 expression levels, which led to poor prognosis. Overexpressing NSG3 suppressed proliferation, invasion and migration capacities of PC cells. On the contrary, knocking-down NSG3 prompted PC malignancy whether in vivo or in vitro. Importantly, NSG3 prevented Erk1/2 phosphorylation to inhibit PD-L1 expression. Additionally, NSG3 and an immune checkpoint inhibitor anti-PD-1 antibody acted synergistically, which enhanced the efficacy of the inhibitor. NSG3 inhibited PD-L1 expression by suppressing Erk1/2 phosphorylation to improve the immune response to PC. NSG3 is, therefore, a potential new diagnostic and prognostic marker, particularly useful in immune checkpoint blockade therapy. AJCR Copyright Ā© 2021.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity.

    In Frontiers in Immunology on 17 November 2020 by Millet, N., Solis, N. V., et al.

    PubMed

    The fungus Candida albicans colonizes the oral mucosal surface of 30-70% of healthy individuals. Due to local or systemic immunosuppression, this commensal fungus is able to proliferate resulting in oral disease, called oropharyngeal candidiasis (OPC). However, in healthy individuals C. albicans causes no harm. Unlike humans mice do not host C. albicans in their mycobiome. Thus, oral fungal challenge generates an acute immune response in a naive host. Therefore, we utilized C. albicans clinical isolates which are able to persist in the oral cavity without causing disease to analyze adaptive responses to oral fungal commensalism. We performed RNA sequencing to determine the transcriptional host response landscape during C. albicans colonization. Pathway analysis revealed an upregulation of adaptive host responses due to C. albicans oral persistence, including the upregulation of the immune network for IgA production. Fungal colonization increased cross-specific IgA levels in the saliva and the tongue, and IgA+ cells migrated to foci of fungal colonization. Binding of IgA prevented fungal epithelial adhesion and invasion resulting in a dampened proinflammatory epithelial response. Besides CD19+ CD138- B cells, plasmablasts, and plasma cells were enriched in the tongue of mice colonized with C. albicans suggesting a potential role of B lymphocytes during oral fungal colonization. B cell deficiency increased the oral fungal load without causing severe OPC. Thus, in the oral cavity B lymphocytes contribute to control commensal C. albicans carriage by secreting IgA at foci of colonization thereby preventing fungal dysbiosis. Copyright Ā© 2020 Millet, Solis and Swidergall.

    • Immu-depl
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity.

    In The Journal of Clinical Investigation on 1 July 2020 by Poropatich, K., Dominguez, D., et al.

    PubMed

    Plasmacytoid DCs (pDCs), the major producers of type I interferon, are principally recognized as key mediators of antiviral immunity. However, their role in tumor immunity is less clear. Depending on the context, pDCs can promote or suppress antitumor immune responses. In this study, we identified a naturally occurring pDC subset expressing high levels of OX40 (OX40+ pDC) enriched in the tumor microenvironment (TME) of head and neck squamous cell carcinoma. OX40+ pDCs were distinguished by a distinct immunostimulatory phenotype, cytolytic function, and ability to synergize with conventional DCs (cDCs) in generating potent tumor antigen-specific CD8+ T cell responses. Transcriptomically, we found that they selectively utilized EIF2 signaling and oxidative phosphorylation pathways. Moreover, depletion of pDCs in the murine OX40+ pDC-rich tumor model accelerated tumor growth. Collectively, we present evidence of a pDC subset in the TME that favors antitumor immunity.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity.

    In Immunity on 19 May 2020 by Teijeira, A., Garasa, S., et al.

    PubMed

    Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ TĀ cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.Copyright Ā© 2020 Elsevier Inc. All rights reserved.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity.

    In Cell on 19 March 2020 by Lu, Y., Zhao, Q., et al.

    PubMed

    Understanding molecular mechanisms that dictate B cell diversity is important for targeting B cells as anti-cancer treatment. Through the single-cell dissection of B cell heterogeneity in longitudinal samples of patients with breast cancer before and after neoadjuvant chemotherapy, we revealed that an ICOSL+ B cell subset emerges after chemotherapy. Using three immunocompetent mouse models, we recapitulated the subset switch of human tumor-infiltrating B cells during chemotherapy. By employing B-cell-specific deletion mice, we showed that ICOSL in B cells boosts anti-tumor immunity by enhancing the effector to regulatory TĀ cell ratio. The signature of ICOSL+ B cells is imprinted by complement-CR2 signaling, which is triggered by immunogenic cell death. Moreover, we identified that CD55, a complement inhibitory protein, determines the opposite roles of B cells in chemotherapy. Collectively, we demonstrated a critical role of the B cell subset switch in chemotherapy response, which has implications in designing novel anti-cancer therapies. VIDEO ABSTRACT.Copyright Ā© 2020 Elsevier Inc. All rights reserved.

    • FC/FACS
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses.

    In Cell Reports on 28 January 2020 by Fallet, B., Hao, Y., et al.

    PubMed

    Persistent viral infections subvert key elements of adaptive immunity. To compare germinal center (GC) B cell responses in chronic and acute lymphocytic choriomeningitis virus infection, we exploit activation-induced deaminase (AID) fate-reporter mice and perform adoptive B cell transfer experiments. Chronic infection yields GC B cell responses of higher cellularity than acute infections do, higher memory B cell and antibody secreting cell output for longer periods of time, a better representation of the late B cell repertoire in serum immunoglobulin, and higher titers of protective neutralizing antibodies. GC B cells of chronically infected mice are similarly hypermutated as those emerging from acute infection. They efficiently adapt to viral escape variants and even in hypermutation-impaired AID mutant mice, chronic infection selects for GC B cells with hypermutated B cell receptors (BCRs) and neutralizing antibody formation. These findings demonstrate that, unlike for CD8+ TĀ cells, chronic viral infection drives a functional, productive, and protective GC B cell response.Copyright Ā© 2019 The Authors. Published by Elsevier Inc. All rights reserved.

    • Immu-depl
    • ,
    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Biochemistry and Molecular biology
    • ,
    • Cancer Research
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice.

    In Nature Communications on 10 January 2020 by Wang, G., Xu, J., et al.

    PubMed

    Cancer stem cells (CSCs) may be responsible for treatment resistance, tumor metastasis, and disease recurrence. Here we demonstrate that the Arf1-mediated lipid metabolism sustains cells enriched with CSCs and its ablation induces anti-tumor immune responses in mice. Notably, Arf1 ablation in cancer cells induces mitochondrial defects, endoplasmic-reticulum stress, and the release of damage-associated molecular patterns (DAMPs), which recruit and activate dendritic cells (DCs) at tumor sites. The activated immune system finally elicits antitumor immune surveillance by stimulating T-cell infiltration and activation. Furthermore, TCGA data analysis shows an inverse correlation between Arf1 expression and T-cell infiltration and activation along with patient survival in various human cancers. Our results reveal that Arf1-pathway knockdown not only kills CSCs but also elicits a tumor-specific immune response that converts dying CSCs into a therapeutic vaccine, leading to durable benefits.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    Clec10a regulates mite-induced dermatitis.

    In Science Immunology on 6 December 2019 by Kanemaru, K., Noguchi, E., et al.

    PubMed

    House dust mite (HDM) is a major allergen that causes allergic diseases such as atopic dermatitis. However, the regulatory mechanisms of HDM-induced immune responses are incompletely understood. NC/Nga mice are an inbred strain that is more susceptible to HDM and develops more severe dermatitis than other strains. Using whole-exome sequencing, we found that NC/Nga mice carry a stop-gain mutation in Clec10a, which encodes a C-type lectin receptor, Clec10a (MGL1/CD301a). The repair of this gene mutation using the CRISPR-Cas9 system ameliorated HDM-induced dermatitis, indicating that the Clec10a mutation is responsible for hypersensitivity to HDM in NC/Nga mice. Similarly, Clec10a -/- mice on the C57BL/6J background showed exacerbated HDM-induced dermatitis. Clec10a expressed on skin macrophages inhibits HDM-induced Toll-like receptor 4 (TLR4)-mediated inflammatory cytokine production through the inhibitory immunoreceptor tyrosine activating motif in its cytoplasmic portion. We identified asialoglycoprotein receptor 1 (Asgr1) as a functional homolog of mouse Clec10a in humans. Moreover, we found that a mucin-like molecule in HDM is a ligand for mouse Clec10a and human Asgr1. Skin application of the ligand ameliorated a TLR4 ligand-induced dermatitis in mice. Our findings suggest that Clec10a in mice and Asgr1 in humans play an important role in skin homeostasis against inflammation associated with HDM-induced dermatitis.Copyright Ā© 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    ICOS Costimulation at the Tumor Site in Combination with CTLA-4 Blockade Therapy Elicits Strong Tumor Immunity.

    In Molecular Therapy on 6 November 2019 by Soldevilla, M. M., Villanueva, H., et al.

    PubMed

    Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) blockade therapy is able to induce long-lasting antitumor responses in a fraction of cancer patients. Nonetheless, there is still room for improvement in the quest for new therapeutic combinations. ICOS costimulation has been underscored as a possible target to include with CTLA-4 blocking treatment. Herein, we describe an ICOS agonistic aptamer that potentiates TĀ cell activation and induces stronger antitumor responses when locally injected at the tumor site in combination with anti-CTLA-4 antibody in different tumor models. Furthermore, ICOS agonistic aptamer was engineered as a bi-specific tumor-targeting aptamer to reach any disseminated tumor lesions after systemic injection. Treatment with the bi-specific aptamer in combination with CTLA-4 blockade showed strong antitumor immunity, even in a melanoma tumor model where CTLA-4 treatment alone did not display any significant therapeutic benefit. Thus, this work provides strong support for the development of combinatorial therapies involving anti-CTLA-4 blockade and ICOS agonist tumor-targeting agents.Copyright Ā© 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Therapeutic Targeting of CD146/MCAM Reduces Bone Metastasis in Prostate Cancer.

    In Molecular Cancer Research on 1 May 2019 by Zoni, E., Astrologo, L., et al.

    PubMed

    Prostate Cancer is the most common cancer and the second leading cause of cancer-related death in males. When prostate cancer acquires castration resistance, incurable metastases, primarily in the bone, occur. The aim of this study is to test the applicability of targeting melanoma cell adhesion molecule (MCAM; CD146) with a mAb for the treatment of lytic prostate cancer bone metastasis. We evaluated the effect of targeting MCAM using in vivo preclinical bone metastasis models and an in vitro bone niche coculture system. We utilized FACS, cell proliferation assays, and gene expression profiling to study the phenotype and function of MCAM knockdown in vitro and in vivo. To demonstrate the impact of MCAM targeting and therapeutic applicability, we employed an anti-MCAM mAb in vivo. MCAM is elevated in prostate cancer metastases resistant to androgen ablation. Treatment with DHT showed MCAM upregulation upon castration. We investigated the function of MCAM in a direct coculture model of human prostate cancer cells with human osteoblasts and found that there is a reduced influence of human osteoblasts on human prostate cancer cells in which MCAM has been knocked down. Furthermore, we observed a strongly reduced formation of osteolytic lesions upon bone inoculation of MCAM-depleted human prostate cancer cells in animal model of prostate cancer bone metastasis. This phenotype is supported by RNA sequencing (RNA-seq) analysis. Importantly, in vivo administration of an anti-MCAM human mAb reduced the tumor growth and lytic lesions. These results highlight the functional role for MCAM in the development of lytic bone metastasis and suggest that MCAM is a potential therapeutic target in prostate cancer bone metastasis. IMPLICATIONS: This study highlights the functional application of an anti-MCAM mAb to target prostate cancer bone metastasis. Ā©2019 American Association for Cancer Research.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Costimulation Induces CD4Ā T Cell Antitumor Immunity via an Innate-like Mechanism.

    In Cell Reports on 30 April 2019 by Morales Del Valle, C., Maxwell, J. R., et al.

    PubMed

    Chronic exposure to tumor-associated antigens inactivates cognate TĀ cells, restricting the repertoire of tumor-specific effector TĀ cells. This problem was studied here by transferring TCR transgenic CD4 TĀ cells into recipient mice that constitutively express a cognate self-antigen linked to MHC II on CD11c-bearing cells. Immunotherapeutic agonists to CD134 plus CD137, "dual costimulation," induces specific CD4 TĀ cell expansion and expression of the receptor for the Th2-associated IL-1 family cytokine IL-33. Rather than producing IL-4, however, they express the tumoricidal Th1 cytokine IFNĪ³ when stimulated with IL-33 or IL-36 (a related IL-1 family member) plus IL-12 or IL-2. IL-36, which is induced within B16-F10 melanomas by dual costimulation, reduces tumor growth when injected intratumorally as a monotherapy and boosts the efficacy of tumor-nonspecific dual costimulated CD4 TĀ cells. Dual costimulation thus enables chronic antigen-exposed CD4 TĀ cells, regardless of tumor specificity, to elaborate tumoricidal function in response to tumor-associated cytokines. Copyright Ā© 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    iNKT Cells Orchestrate a Switch from Inflammation to Resolution of Sterile Liver Injury.

    In Immunity on 17 October 2017 by Liew, P. X., Lee, W. Y., et al.

    PubMed

    After traumatic injury, some cells function as detectors to sense injury and to modulate the local immune response toward a restitution phase by affecting the local cytokine milieu. Using intravital microscopy, weĀ observed that patrolling invariant natural killer TĀ (iNKT) cells were initially excluded from a site of hepatic injury but subsequently were strategically arrested first via self-antigens and then by cytokines, circumscribing the injured site at exactly the location where monocytes co-localized and hepatocytes proliferated. Activation of iNKT cells by self-antigens resulted in the production of interleukin-4 (IL-4) but not interferon-Ī³ (IFN-Ī³). This promoted increased hepatocyte proliferation, monocyte transition (from Ly6Chi to Ly6Clo), and improved healing where IL-4 from iNKT cells was critical for these processes. Disruption of any of these mechanisms led to delayed wound healing. We have shown that self-antigen-driven iNKT cells function as sensors and orchestrators of the transformation from inflammation to tissue restitution for essential timely wound repair.Crown Copyright Ā© 2017. Published by Elsevier Inc. All rights reserved.

1 2

Related Products