InVivoMAb polyclonal mouse IgG

Catalog #BE0093
Product Citations:
12
Clone:
Polyclonal

$172.00 - $4,494.00

$172.00 - $4,494.00

Choose an Option...
  • 100 mg - $4,494.00
  • 50 mg - $3,175.00
  • 25 mg - $2,109.00
  • 5 mg - $630.00
  • 1 mg - $172.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The polyclonal mouse IgG is purified from mouse serum. It is ideal for use as a non-reactive control IgG for polyclonal mouse IgG antibodies in most in vivo and in vitro applications.

Specifications

Isotype Mouse IgG
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/μg)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from mouse serum
Purification Protein G
RRID AB_1107789
Molecular Weight 150 kDa
Murine Pathogen Tests Ectromelia/Mousepox Virus: Negative
Hantavirus: Negative
K Virus: Negative
Lactate Dehydrogenase-Elevating Virus: Negative
Lymphocytic Choriomeningitis virus: Negative
Mouse Adenovirus: Negative
Mouse Cytomegalovirus: Negative
Mouse Hepatitis Virus: Negative
Mouse Minute Virus: Negative
Mouse Norovirus: Negative
Mouse Parvovirus: Negative
Mouse Rotavirus: Negative
Mycoplasma Pulmonis: Negative
Pneumonia Virus of Mice: Negative
Polyoma Virus: Negative
Reovirus Screen: Negative
Sendai Virus: Negative
Theiler’s Murine Encephalomyelitis: Negative
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
Liao, Y., et al. (2020). "Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis" Nat Commun 11(1): 900. PubMed

Copper levels are known to be elevated in inflamed and malignant tissues. But the mechanism underlying this selective enrichment has been elusive. In this study, we report a axis by which inflammatory cytokines, such as IL-17, drive cellular copper uptake via the induction of a metalloreductase, STEAP4. IL-17-induced elevated intracellular copper level leads to the activation of an E3-ligase, XIAP, which potentiates IL-17-induced NFĪŗB activation and suppresses the caspase 3 activity. Importantly, this IL-17-induced STEAP4-dependent cellular copper uptake is critical for colon tumor formation in a murine model of colitis-associated tumorigenesis and STEAP4 expression correlates with IL-17 level and XIAP activation in human colon cancer. In summary, this study reveals a IL-17-STEAP4-XIAP axis through which the inflammatory response induces copper uptake, promoting colon tumorigenesis.

Mostafa, H. H., et al. (2016). "Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone" PLoS Pathog 12(9): e1005875. PubMed

In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    CBD promotes antitumor activity by modulating tumor immune microenvironment in HPV associated head and neck squamous cell carcinoma.

    In Frontiers in Immunology on 6 June 2025 by Sen, P., Sadat, S., et al.

    Marijuana use is associated with HPV-positive head and neck squamous cell carcinoma (HNSCC). However, cannabinoid use continues to increase in the US general population for recreational purposes as well as in cancer patients for palliative care. In this study, we explored the role of cannabidiol (CBD) in promoting anti-tumor activity by modulating immune response in HPV-positive HNSCC by using pre-clinical models. The anti-proliferative effect of CBD on HPV-positive HNSCC cells was evaluated through BrdU, apoptosis and migration analyses, followed by western blot analysis to assess its role in activating the MAPK pathway. Next, the anti-tumor immune response of CBD was evaluated in immunocompetent syngeneic mouse as well as in immune-deficient B6.129S7-Rag1tm1Mom/J or Rag 1 Knockout mice (Rag1 -/-) and athymic nude mouse. Immune cell infiltration was measured by flow cytometry, IHC and multiplex IHC analysis after subcutaneous injection of mEER cells. Furthermore, the anti-tumor activity of CBD on the tumor microenvironment was evaluated after the depletion of CD4+T cells and CD8+T cells in murine models. We observed CBD treatment inhibited cell proliferation and migration by promoting apoptosis in HPV-positive HNSCC cells through activation of the MAPK pathway and its associated markers like ERK1/2, JNK/SAPK and MK2. CBD significantly inhibited tumor growth in immunocompetent mice but had no effect in immune-deficient models, indicating an immune-dependent mechanism. CBD enhanced infiltration of CD4+T and CD8+T cells, CD19+B cells, NK cells, and M1-like macrophages into the primary tumors of immunocompetent syngeneic mice models, implicating an enhanced anti-tumor immune response. Interestingly, we observed a significant increase in tumor volume in CD4-depleted mice treated with CBD as compared to CBD-treated wild-type mice suggesting the importance of CD4+T cells in CBD-mediated anti-tumor activity. Finally, multiplex IHC analysis demonstrated co-localization of CD4+T and CD8+ T cells with the activated MAPK marker phospho-p38 in CBD-treated tumors. CBD inhibits tumor cell proliferation in HPV-positive HNSCC by activating the MAPK pathway. It also enhances anti-tumor activity by modulating the tumor immune microenvironment, promoting co-localization of p38 MAPK-activated CD4+ and CD8+ T cells. Copyright Ā© 2025 Sen, Sadat, Ebisumoto, Al-Msari, Miyauchi, Roy, Mohammadzadeh, Lips, Nakagawa, Saddawi-Konefka, Sharabi and Califano.

    LRG1 inhibition promotes acute pancreatitis recovery by inducing cholecystokinin Type 1 receptor expression via Akt.

    In Theranostics on 14 April 2025 by Lim, S. T., Zhao, X., et al.

    Rationale: Acute pancreatitis (AP) is a common gastrointestinal disease affecting nearly 3 million people annually worldwide. Although AP is typically self-limiting, up to 20% of patients may develop life-threatening complications. Individuals who suffer from AP also have an increased likelihood of developing other exocrine and endocrine pancreatic disorders. However, to date, there are no specific, targeted treatment modalities that can effectively improve the clinical outcomes of AP. Leucine-rich alpha-2 glycoprotein 1 (LRG1) is a multifunctional protein with established roles in inflammation and cell mitosis. This study aims to investigate the functional role of LRG1 in AP progression and develop LRG1-targeted AP therapeutics. Methods: Levels of circulating and tissue LRG1 were determined in human patient samples and mouse models of caerulein-induced AP and pancreatic duct ligation-induced AP. Histopathological grading, amylase assay, real-time polymerase chain reaction analysis and Western blotting were used to evaluate the extent of pancreatic damage and recovery following caerulein-induced AP in both wild-type and Lrg1-/- mice. Primary acinar cells were also isolated from mice for in-vitro mechanistic studies. LRG1 neutralizing antibody was administered post-AP induction to evaluate its therapeutic potential in improving AP outcomes. Results: LRG1 is markedly increased in serum and acinar cells of AP patients and C57BL/6 mice subjected to caerulein-induced AP or pancreatic duct ligation-induced AP. Despite demonstrating no obvious pancreatic dysfunction, Lrg1-/- mice exhibited more severe pancreatic damage and inflammation during the early stages of caerulein-induced AP. However, the resolution of AP was accelerated in the absence of Lrg1, which is at least partially due to LRG1's role in regulating the expression of trophic cholecystokinin (CCK) Type 1 receptor (CCK1R) via the TGFβ/ALK5/AKT pathway in acinar cells. Importantly, the administration of an LRG1-blocking antibody promoted AP recovery, evidenced by reduced overall inflammation and increased acinar cell proliferation. Conclusions: Our data provide compelling evidence for targeting LRG1 as a potential innovative therapy for promoting AP recovery. © The author(s).

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma.

    In Cell Death & Disease on 6 March 2025 by Ding, C. H., Yan, F. Z., et al.

    Aberrant expression of programmed death ligand-1 (PD-L1) facilitates tumor immune evasion. Protein arginine methyltransferase 3 (PRMT3), a member of type I PRMT family, mediates asymmetric dimethylarginine (ADMA) modification of various substrate proteins. This study investigates the role of PRMT3 in PD-L1-associated tumor immunosuppression in hepatocellular carcinoma (HCC). Hepatocyte-specific knockout of Prmt3 significantly suppressed HCC progression in DEN-CCL4-treated mice. Knockout of Prmt3 in HCC cells markedly increased CD8+ T cell infiltration, and reduced lactate production in tumors. PRMT3 interacted with pyruvate dehydrogenase kinase 1 (PDHK1), asymmetric dimethylation of PDHK1 at arginine 363 and 368 residues and increased its kinase activity. The R363/368 K mutant or inhibition of PDHK1 by JX06 blocked the effect of PRMT3 on lactate production. JX06 treatment also attenuated the tumor-promoting role of PRMT3 in HCC in vitro and in vivo. Furthermore, RNA-seq analysis revealed that knockout of PRMT3 downregulates the tumor-associated immune checkpoint, PD-L1, in tumor tissues. Chromatin immunoprecipitation (ChIP) assay demonstrated that PRMT3 promotes lactate-induced PD-L1 expression by enhancing the direct binding of histone H3 lysine 18 lactylation (H3K18la) to the PD-L1 promoter. Tissue microarray analysis showed a positive correlation between PRMT3 and PD-L1 expression in HCC patients. Anti-PD-L1 treatment reversed PRMT3-induced tumor growth and restored CD8+ T cell infiltration. Our research links PRMT3-mediated metabolic reprogramming and immune evasion, revealing that the PRMT3-PDHK1-lactate-PD-L1 axis may be a potential target for improving the efficacy of immunotherapy in HCC. Ā© 2025. The Author(s).

    N153-linked glycans on envelope protein protect orthoflaviviruses from antibody-mediated clearance

    Preprint on BioRxiv : the Preprint Server for Biology on 23 February 2025 by Ting, D. H. R., Marzinek, J. K., et al.

    The envelope (E) protein of dengue virus (DENV) is glycosylated at two highly conserved asparagine (N) sites (N67 and N153). The role and importance of these N-linked glycans in DENV pathogenesis has been elusive. Here, we report the critical role of N153-linked glycans on E protein in preventing antibody-mediated viral clearance. A DENV2 mutant lacking N153-linked glycans (N153Q mutant) was engineered and found to be mildly impaired in vitro but drastically attenuated in a symptomatic mouse model of severe dengue, as evidenced by accelerated viral clearance. In B cell-deficient mouse models, N153Q mutant displayed parental virulence and viremia profile. Homologous and heterologous passive transfers of purified IgM from infected B cell-proficient mice into B cell-deficient mice demonstrated the role of N153Q-specific IgM in N153Q attenuation and accelerated clearance, while WT DENV was unaffected by IgM from both WT- and N153Q-infected mice. Furthermore, in vitro neutralization assay supported that the accelerated clearance of N153Q mutant in mice was mediated by non-neutralizing IgM. Furthermore, using plasma samples from convalescent dengue patients and monoclonal antibodies, in vitro neutralization assays showed that N153Q virus was more susceptible than WT to IgG-mediated neutralization. Glycoproteomics combined with molecular dynamics (MD) simulations revealed that glycan composition on E protein influenced IgG binding. Our findings were extended to all DENV serotypes and ZIKV, hence supporting that the N153 glycans-mediated immune evasion strategy is conserved across orthoflaviviruses.

    • Biochemistry and Molecular biology
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    MerTK Induces Dysfunctional Dendritic Cells by Metabolic Reprogramming.

    In Cancer Immunology Research on 3 September 2024 by Zewdie, E. Y., Edwards, G. M., et al.

    Checkpoint inhibitors, specifically anti-programmed cell death protein 1 (PD1), have shown success in treating metastatic melanoma; however, some patients develop resistance. Dendritic cells (DC) play a key role in initiating an immune response, but in certain circumstances they become ineffective. We investigated the role of MerTK, a receptor tyrosine kinase responsible for myeloid cell clearance of dead cells, in the regulation of DC function and metabolism in the tumor microenvironment. Tumors resistant to anti-PD1 exhibited increased levels of MerTK+ DCs. Treating wild-type DCs with apoptotic melanoma cells in vitro resulted in increased MerTK expression, elevated mitochondrial respiration and fatty acid oxidation, and reduced T-cell stimulatory capacity, all characteristics of dysfunctional DCs. In contrast, dead cells had only limited effect on the metabolism of MerTK-deficient DCs, which instead maintained an antigen-presenting, stimulatory phenotype. The efficacy of anti-PD1 to slow tumor progression and induce antigen specific T-cell infiltration was markedly increased in mice with selective ablation of MerTK in the DC compartment, suggesting the possibility of therapeutically targeting MerTK to modulate DC metabolism and function and enhance anti-PD1 therapy. ©2024 American Association for Cancer Research.

    • Immunology and Microbiology
    Blockade of OX40/OX40L signaling using anti-OX40L alleviates murine lupus nephritis.

    In European Journal of Immunology on 1 August 2024 by Zhao, J., Li, L., et al.

    Genetic variants of the OX40 ligand (OX40L) locus are associated with the risk of systemic lupus erythematosus (SLE), it is unclear how the OX40L blockade delays the lupus phenotype. Therefore, we examined the effects of an anti-OX40L antibody in MRL/Lpr mice. Next, we investigated the effect of anti-OX40L on immunosuppression in keyhole limpet hemocyanin-immunized C57BL/6J mice. In vitro treatment of anti-OX40L in CD4+ T and B220+ B cells was used to explore the role of OX40L in the pathogenesis of SLE. Anti-OX40L alleviated murine lupus nephritis, accompanied by decreased production of anti-dsDNA and proteinuria, as well as lower frequencies of splenic T helper (Th) 1 and T-follicular helper cells (Tfh). In keyhole limpet hemocyanin-immunized mice, decreased levels of immunoglobulins and plasmablasts were observed in the anti-OX40L group. Anti-OX40L reduced the number and area of germinal centers. Compared with the control IgG group, anti-OX40L downregulated CD4+ T-cell differentiation into Th1 and Tfh cells and upregulated CD4+ T-cell differentiation into regulatory T cells in vitro. Furthermore, anti-OX40L inhibited toll-like receptor 7-mediated differentiation of antibody-secreting cells and antibody production through the regulation of the SPIB-BLIMP1-XBP1 axis in B cells. These results suggest that OX40L is a promising therapeutic target for SLE. Ā© 2024 Wiley‐VCH GmbH.

    Pro-survival signaling regulates lipophagy essential for multiple myeloma resistance to stress-induced death.

    In Cell Reports on 23 July 2024 by Peng, P., Chavel, C., et al.

    Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy inĀ vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM. Copyright Ā© 2024 The Authors. Published by Elsevier Inc. All rights reserved.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    PACSIN1 promotes immunosuppression in gastric cancer by degrading MHC-I.

    In Acta Biochimica et Biophysica Sinica on 31 May 2024 by Liu, Z., Li, X., et al.

    Gastric cancer (GC) is a common gastrointestinal system malignancy. PACSIN1 functions as an oncogene in various cancers. This study aims to investigate the potential of PACSIN1 as a target in GC treatment. Gene expression is determined by RT-qPCR, immunofluorescence staining, and immunohistochemistry assay. FISH is performed to determine the colocalization of PACSIN1 and the major histocompatibility complex (MHC-I). Cytokine release and cell functions are analyzed by flow cytometry. In vivo assays are also conducted. Histological analysis is performed using H&E staining. The results show that PACSIN1 is overexpressed in GC patients, especially in those with immunologically-cold tumors. A high level of PACSIN1 is associated with poor prognosis. PACSIN1 deficiency inhibits autophagy but increases antigen presentation in GC cells. Moreover, PACSIN1 deficiency inhibits the lysosomal fusion and selective autophagy of MHC-I, increases CD8 + T-cell infiltration, and suppresses tumor growth and liver metastasis in vivo. Additionally, PACSIN1 knockout enhances the chemosensitivity of cells to immune checkpoint blockade. In summary, PACSIN1 mediates lysosomal fusion and selective autophagy of MHC-I and suppresses antigen presentation and CD8 + T-cell infiltration, thus inhibiting antitumor immunity in GC.

    • Cancer Research
    PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma.

    In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 December 2023 by Wang, Y., Wang, C., et al.

    Protein arginine methyltransferase (PRMT) plays essential roles in tumor initiation and progression, but its underlying mechanisms in the treatment sensitivity of endometrial cancer (EC) remain unclear and warrant further investigation. Here, a comprehensive analysis of the Cancer Genome Atlas database and Clinical Proteomic Tumor Analysis Consortium database identifies that PRMT3 plays an important role in EC. Specifically, further experiments show that PRMT3 inhibition enhances the susceptibility of EC cells to ferroptosis. Mechanistically, PRMT3 interacts with Methyltransferase 14 (METTL14) and is involved in its arginine methylation. In addition, PRMT3 inhibition-mediated METTL14 overexpression promotes methylation modification via an m6 A-YTHDF2-dependent mechanism, reducing Glutathione peroxidase 4 (GPX4) mRNA stability, increasing lipid peroxidation levels, and accelerating ferroptosis. Notably, combined PRMT3 blockade and anti-PD-1 therapy display more potent antitumor effects by accelerating ferroptosis in cell-derived xenograft models. The specific PRMT3 inhibitor SGC707 exerts the same immunotherapeutic sensitizing effect in a patient-derived xenograft model. Notably, blocking PRMT3 improves tumor suppression in response to cisplatin and radiation therapy. Altogether, this work demonstrates that PRMT3 depletion is a promising target for EC. Ā© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

    • Endocrinology and Physiology
    • ,
    • Immunology and Microbiology
    IL-17A neutralization fails to attenuate airway remodeling and potentiates a proinflammatory lung microenvironment in diacetyl-exposed rats.

    In American Journal of Physiology - Lung Cellular and Molecular Physiology on 1 October 2023 by House, E. L., Kim, S. Y., et al.

    Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day Ɨ 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor-kappa B (NF-ĪŗB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1β, and NF-ĪŗB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1β, and NF-ĪŗB within the lung.

    • Cancer Research
    Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma.

    In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 September 2023 by Wong, S. W. K., Tey, S. K., et al.

    PubMed

    Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication. Ā© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

    Blockade of OX40/OX40L signaling using anti-OX40L delays disease progression in murine lupus

    Preprint on Research Square on 11 July 2023 by Zhao, J., Li, L., et al.

    PubMed

    Objectives: OX40 ligand (OX40L) locus genetic variants have relationships with the risk for systemic lupus erythematosus (SLE), OX40L blockade has been shown to ameliorate renal damage and suppress autoantibody production in NZB/W F1 mice. However, it is unclear how OX40L blockade delays lupus phenotype. Methods In present study, we examined the impact of blocking OX40L using anti-OX40L in the MRL/lpr murine model of lupus. Mice were sorted into 3 groups with 9 ~ 11 mice per group as follows: IgG treatment, Cyclophosphamide (CTX) treatment, and anti-OX40L treatment. Treated mice were harvested, and samples of serum, kidney, and spleen were collected for outcome evaluation. Next, we investigated the impact of anti-OX40L on immunosuppression in KLH-immunized C57BL/6J mice aged 8 weeks through the detection of serum immunoglobulins (Igs) and splenocyte flow cytometry. In vitro treatment of anti-OX40L in CD4 + T and CD19 + B cells were used for exploring the roles of OX40L in SLE pathogenesis. Results Anti-OX40L delayed disease progression in MRL/lpr mice, accompanied by decreased production of anti-dsDNA, proteinuria, and Ig deposition in kidney, as well as lower frequencies of Th1 and Tfh cells in the spleen. Compared to the IgG group, anti-OX40L was found to up-regulate polyclonal CD4 + T cell differentiation into Tregs in vitro. In KLH-immunized mice, decreased levels of Igs, and plasmablast cells were observed in anti-OX40L group. Blocking OX40/OX40L signaling also inhibited TLR7-mediated differentiation of antibody secreting cells (ASCs) and production of antibody through the up-regulation of SPI-B, IRF8, and PAX5, and down-regulation of Xbp-1 in B cells in vitro . Conclusion Together, these results propose OX40L as a promising therapeutic target for SLE.

    • Immunology and Microbiology
    Rapid, site-specific labeling of "off-the-shelf" and native serum autoantibodies with T cell-redirecting domains.

    In Science Advances on 6 May 2022 by Zappala, F., Higbee-Dempsey, E., et al.

    PubMed

    Extensive antibody engineering and cloning is typically required to generate new bispecific antibodies. Made-to-order genes, advanced expression systems, and high-efficiency cloning can simplify and accelerate this process, but it still can take months before a functional product is realized. We developed a simple method to site-specifically and covalently attach a T cell-redirecting domain to any off-the-shelf, human immunoglobulin G (IgG) or native IgG isolated from serum. No antibody engineering, cloning, or knowledge of the antibody sequence is required. Bispecific antibodies are generated in just hours. By labeling antibodies isolated from tumor-bearing mice, including two syngeneic models, we generated T cell-redirecting autoantibodies (TRAAbs) that act as an effective therapeutic. TRAAbs preferentially bind tumor tissue over healthy tissue, indicating a previously unexplored therapeutic window. The use of autoantibodies to direct the tumor targeting of bispecific antibodies represents a new paradigm in personalized medicine that eliminates the need to identify tumor biomarkers.

    • Immunology and Microbiology
    VISTA Blockade Aggravates Bone Loss in Experimental Murine Apical Periodontitis.

    In Frontiers in Immunology on 26 October 2021 by Yang, F., Zhang, Y., et al.

    PubMed

    V-domain Ig suppressor of T cell activation (VISTA) is a novel coinhibitory immune checkpoint molecule that maintains immune homeostasis. The present study explored the role of VISTA in human and murine inflammatory tissues of apical periodontitis (AP). VISTA was upregulated in inflammatory tissues of human AP. In mice, the expression of VISTA gradually increased with the development of mouse experimental apical periodontitis (MAP), the CD3+ T cells, CD11b+ myeloid cells, and FOXP3+ regulatory T cells also gradually accumulated. Moreover, a blockade of VISTA using a mouse in vivo anti-VISTA antibody aggravated periapical bone loss and enhanced the infiltration of immune cells in an experimental mouse periapical periodontitis model. The collective results suggest that VISTA serves as a negative regulator of the development and bone loss of apical periodontitis. Copyright Ā© 2021 Yang, Zhang, Chen and Zhang.

    • Cancer Research
    Identification ACTA2 and KDR as key proteins for prognosis of PD-1/PD-L1 blockade therapy in melanoma.

    In Animal Models and Experimental Medicine on 1 June 2021 by Wang, Y., Li, Z., et al.

    PubMed

    Programmed cell death protein 1 (PD-1) /programmed cell death ligand 1 (PD-L1) blockade is an important therapeutic strategy for melanoma, despite its low clinical response. It is important to identify genes and pathways that may reflect the clinical outcomes of this therapy in patients. We analyzed clinical dataset GSE96619, which contains clinical information from five melanoma patients before and after anti-PD-1 therapy (five pairs of data). We identified 704 DEGs using these five pairs of data, and then the number of DEGs was narrowed down to 286 in patients who responded to treatment. Next, we performed KEGG pathway enrichment and constructed a DEG-associated protein-protein interaction network. Smooth muscle actin 2 (ACTA2) and tyrosine kinase growth factor receptor (KDR) were identified as the hub genes, which were significantly downregulated in the tumor tissue of the two patients who responded to treatment. To confirm our analysis, we demonstrated similar expression tendency to the clinical data for the two hub genes in a B16F10 subcutaneous xenograft model. This study demonstrates that ACTA2 and KDR are valuable responsive markers for PD-1/PD-L1 blockade therapy. Ā© 2021 The Authors. Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Tissue-Resident Type 2 Innate Lymphoid Cells Arrest Alveolarization in Bronchopulmonary Dysplasia.

    In Journal of Immunology Research on 13 November 2020 by Mi, L., Zhu, S., et al.

    PubMed

    Bronchopulmonary dysplasia (BPD) is a severe complication of the respiratory system associated with preterm birth. Type 2 innate lymphoid cells (ILC2s) play a major role in tissue homeostasis, inflammation, and wound healing. However, the role in BPD remains unclear. The present study showed that ILC2s, interleukin-4 (IL-4), IL-13, and anti-inflammatory (M2) macrophages increased significantly in BPD mice as compared to the control mice. Administration with recombinant mouse IL-33 amplified the above phenomena and aggravated the alveolar structural disorder and functional injury in mice subjected to BPD, and the opposite was true with anti-ST2 antibody. In addition, the depletion of ILC2s in BPD mice with anti-CD90.2 antibody substantially abolished the destructive effect on BPD. In the treatment of BPD with dexamethasone, the number of ILC2s and M2 macrophages and levels of IL-4 and IL-13 decreased with remission as compared to the control group. This study identified a major destructive role of the ILC2s in BPD that could be attenuated as a therapeutic strategy. Copyright Ā© 2020 Lanlan Mi et al.

    • Cancer Research
    Identification ACTA2 and KDR as Key Proteins for Prognosis of PD-1/PD-L1 Blockade Therapy in Melanoma

    Preprint on Research Square on 2 July 2020 by Wang, Y., Li, Z., et al.

    PubMed

    h4>Background: /h4> Programmed cell death protein 1 (PD-1) /programmed cell death ligand 1 (PD-L1) blockade is an important therapeutic strategy for melanoma, despite its low clinical response. It is important to identify genes and pathways that may reflect the clinical outcomes of this therapy in patients. h4>Methods: /h4> In this study, we analyzed clinical dataset GSE96619, which contains clinical information from five melanoma patients before and after anti-PD-1 therapy (five pairs of data). Two of the five patients responded to the anti-PD-1 treatment, whereas the other three patients did not respond to the treatment. We used MetaboAnalyst to identify differentially expressed genes (DEGs). The significant GO terms and KEGG pathway enrichment analysis of the identified DEGs were performed by using DAVID. The STRING v10 online tool was used to construct and visualize the PPI network. Validation the expression of hub genes in the B16F10 subcutaneous xenograft model h4>Results: /h4> We identified 704 DEGs using these five pairs of data, and then the number of DEGs was narrowed down to 286 in patients who responded to treatment. Next, we performed KEGG pathway enrichment and constructed a DEG-associated protein-protein interaction network. Smooth muscle actin 2 (ACTA2) and tyrosine kinase growth factor receptor (KDR) were identified as the hub genes, which were significantly downregulated in the tumor tissue of the two patients who responded to treatment. To confirm our analysis, we demonstrated similar expression tendency to the clinical data for the two hub genes in a B16F10 subcutaneous xenograft model. h4>Conclusions: /h4> This study demonstrates that ACTA2 and KDR are valuable responsive markers for PD-1/PD-L1 blockade therapy.

    • In Vivo
    • ,
    • Control
    • ,
    • Mus musculus (House mouse)
    • ,
    • Biochemistry and Molecular biology
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis.

    In Nature Communications on 14 February 2020 by Liao, Y., Zhao, J., et al.

    PubMed

    Copper levels are known to be elevated in inflamed and malignant tissues. But the mechanism underlying this selective enrichment has been elusive. In this study, we report a axis by which inflammatory cytokines, such as IL-17, drive cellular copper uptake via the induction of a metalloreductase, STEAP4. IL-17-induced elevated intracellular copper level leads to the activation of an E3-ligase, XIAP, which potentiates IL-17-induced NFĪŗB activation and suppresses the caspase 3 activity. Importantly, this IL-17-induced STEAP4-dependent cellular copper uptake is critical for colon tumor formation in a murine model of colitis-associated tumorigenesis and STEAP4 expression correlates with IL-17 level and XIAP activation in human colon cancer. In summary, this study reveals a IL-17-STEAP4-XIAP axis through which the inflammatory response induces copper uptake, promoting colon tumorigenesis.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    DDR1 promotes breast tumor growth by suppressing antitumor immunity.

    In Oncology Reports on 1 December 2019 by Zhong, X., Zhang, W., et al.

    PubMed

    Breast cancer is the second leading cause of cancer‑associated mortality among women worldwide. Triple‑negative breast cancer (TNBC) accounts for 15‑20%Ā of all breast cancers and is defined by its aggressive nature and limited treatment options. Therefore, there is an urgent need to develop effective therapies for TNBC in order to improve breast cancer outcomes, as targeted therapies have done in other subtypes of breast cancer. Discoidin domain receptor tyrosine kinaseĀ 1 (DDR1) is activated by collagens, which are important components of the tumor stroma; therefore, DDR1 may serve a critical role in the communication between tumor cells and the tumor microenvironment. The aim of the present study was to determine how tumor DDR1 regulated tumor growth by affecting tumor infiltrated TĀ cells. First, the DDR1 expression levels from a cohort of patients with breast cancer were analyzed. The results revealed that there were higher levels of DDR1 expression in tumor tissues compared with adjacent normal tissues. Overexpression of DDR1 in 4T1Ā cells promoted tumor growth inĀ vivo, while knockout of DDR1 in EMT6 cells decreased tumor growth inĀ vivo. In addition, it was revealed that DDR1 regulated tumor growth by modulating tumor infiltrating TĀ cells, CD4+ and CD8+. Furthermore, inhibition of DDR1 by neutralizing antibodies decreased breast cancer growth inĀ vivo. To the best of our knowledge, the results of the present study demonstrated for the first time that DDR1 expressed on the tumor cells promoted breast tumor growth by suppressing antitumor immunity. The present findings indicated that DDR1 may not only have a critical role in the progression of breast cancer, but may also serve as a potential therapeutic target for breast cancer, particularly TNBC.

    • Immunology and Microbiology
    Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone.

    In PLoS Pathogens on 1 September 2016 by Mostafa, H. H., Vogel, P., et al.

    PubMed

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential.

Related Products