InVivoMAb polyclonal goat IgG

Catalog #BE0130
Product Citations:
2
Clone:
Polyclonal

$164.00 - $4,280.00

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The polyclonal goat IgG is purified from goat serum. It is ideal for use as a non-reactive control IgG for goat IgG antibodies in most in vivo and in vitro applications.

Specifications

Isotype Goat IgG
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from goat serum
Purification Protein G
RRID AB_10949067
Molecular Weight 150 kDa
Murine Pathogen Tests Ectromelia/Mousepox Virus: Negative
Hantavirus: Negative
K Virus: Negative
Lactate Dehydrogenase-Elevating Virus: Negative
Lymphocytic Choriomeningitis virus: Negative
Mouse Adenovirus: Negative
Mouse Cytomegalovirus: Negative
Mouse Hepatitis Virus: Negative
Mouse Minute Virus: Negative
Mouse Norovirus: Negative
Mouse Parvovirus: Negative
Mouse Rotavirus: Negative
Mycoplasma Pulmonis: Negative
Pneumonia Virus of Mice: Negative
Polyoma Virus: Negative
Reovirus Screen: Negative
Sendai Virus: Negative
Theilerā€™s Murine Encephalomyelitis: Negative
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
Carretero, R., et al. (2015). "Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells" Nat Immunol 16(6): 609-617. PubMed

Tumor-associated eosinophilia is frequently observed in cancer. However, despite numerous studies of patients with cancer and mouse models of cancer, it has remained uncertain if eosinophils contribute to tumor immunity or are mere bystander cells. Here we report that activated eosinophils were essential for tumor rejection in the presence of tumor-specific CD8(+) T cells. Tumor-homing eosinophils secreted chemoattractants that guided T cells into the tumor, which resulted in tumor eradication and survival. Activated eosinophils initiated substantial changes in the tumor microenvironment, including macrophage polarization and normalization of the tumor vasculature, which are known to promote tumor rejection. Thus, our study presents a new concept for eosinophils in cancer that may lead to novel therapeutic strategies.

    • Cancer Research
    • ,
    CD200R signaling contributes to unfavorable tumor microenvironment through regulating production of chemokines by tumor-associated myeloid cells.

    In IScience on 16 June 2023 by Lin, C. H., Talebian, F., et al.

    PubMed

    CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ TĀ cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors. Ā© 2023 The Author(s).

    • Biochemistry and Molecular biology
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies.

    In Nature Immunology on 1 June 2023 by Glasner, A., Rose, S. A., et al.

    PubMed

    While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers. Ā© 2023. The Author(s).

Related Products