InVivoMAb anti-mouse LAG-3

Catalog #BE0174
Product Citations:
34
Clone:
C9B7W
Reactivities:
Mouse

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The C9B7W monoclonal antibody reacts with mouse LAG-3 also known as CD223. LAG-3 is a 70 kDa type I transmembrane glycoprotein encoded by the Lag3 gene that belongs to the immunoglobulin superfamily. LAG-3 is expressed by activated T lymphocytes, NK cells, and T regulatory cells. LAG-3ā€™s main ligand is MHC class II which it binds to with a higher affinity than even CD4 does. Upon binding LAG-3 is thought to play similar roles as CTLA-4 and PD-1 including downregulation of TCR signaling and inhibition of CD4-dependent T cell function. LAG-3 has also been demonstrated to contribute to the suppressor function of T regulatory cells. In contrast to inhibition, LAG-3 has been shown to promotes immune responses by activating antigen-presenting cells. The C9B7W antibody has been reported to block the function of murine LAG-3 in vivo and in vitro but studies suggest that the antibody does not block binding of LAG-3 to MHC class II.

Specifications

Isotype Rat IgG1,Ā Īŗ
Recommended Isotype Control(s) InVivoMAb rat IgG1 isotype control, anti-horseradish peroxidase
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen Mouse CD223-Ig fusion protein
Reported Applications in vivo LAG-3 neutralization
in vitro LAG-3 neutralization
Flow cytometry
Western blot
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_10949602
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
in vivo LAG-3 neutralization
Bauche, D., et al. (2018). "LAG3(+) Regulatory T Cells Restrain Interleukin-23-Producing CX3CR1(+) Gut-Resident Macrophages during Group 3 Innate Lymphoid Cell-Driven Colitis" Immunity 49(2): 342-352 e345. PubMed

Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3(+) regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1beta production from intestinal-resident CX3CR1(+) macrophages but not CD103(+) dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1(+) macrophage production of IL-23 and IL-1beta. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)-an immune checkpoint receptor-expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1(+) tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.

in vivo LAG-3 neutralization, Flow Cytometry
Rouhani, S. J., et al. (2015). "Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction" Nat Commun 6: 6771. PubMed

Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when beta-galactosidase (beta-gal) is expressed in LECs, beta-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous beta-gal in the context of MHC-II molecules to beta-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Ealpha are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer beta-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.

in vitro LAG-3 neutralization
Verhagen, J. and D. C. Wraith. (2014). "Blockade of LFA-1 augments in vitro differentiation of antigen-induced Foxp3(+) Treg cells" J Immunol Methods 414: 58-64. PubMed

Adoptive transfer of antigen-specific, in vitro-induced Foxp3(+) Treg (iTreg) cells protects against autoimmune disease. To generate antigen-specific iTreg cells at high purity, however, remains a challenge. Whereas polyclonal T cell stimulation with anti-CD3 and anti-CD28 antibody yields Foxp3(+) iTreg cells at a purity of 90-95%, antigen-induced iTreg cells typically do not exceed a purity of 65-75%, even in a TCR-transgenic model. In a similar vein to thymic Treg cell selection, iTreg cell differentiation is influenced not only by antigen recognition and the availability of TGF-beta but also by co-factors including costimulation and adhesion molecules. In this study, we demonstrate that blockade of the T cell integrin Leukocyte Function-associated Antigen-1 (LFA-1) during antigen-mediated iTreg cell differentiation augments Foxp3 induction, leading to approximately 90% purity of Foxp3(+) iTreg cells. This increased efficacy not only boosts the yield of Foxp3(+) iTreg cells, it also reduces contamination with activated effector T cells, thus improving the safety of adoptive transfer immunotherapy.

in vivo LAG-3 neutralization
McGray, A. J., et al. (2014). "Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor" Mol Ther 22(1): 206-218. PubMed

Despite clear evidence of immunogenicity, cancer vaccines only provide a modest clinical benefit. To evaluate the mechanisms that limit tumor regression following vaccination, we have investigated the weak efficacy of a highly immunogenic experimental vaccine using a murine melanoma model. We discovered that the tumor adapts rapidly to the immune attack instigated by tumor-specific CD8+ T cells in the first few days following vaccination, resulting in the upregulation of a complex set of biological networks, including multiple immunosuppressive processes. This rapid adaptation acts to prevent sustained local immune attack, despite continued infiltration by increasing numbers of tumor-specific T cells. Combining vaccination with adoptive transfer of tumor-specific T cells produced complete regression of the treated tumors but did not prevent the adaptive immunosuppression. In fact, the adaptive immunosuppressive pathways were more highly induced in regressing tumors, commensurate with the enhanced level of immune attack. Examination of tumor infiltrating T-cell functionality revealed that the adaptive immunosuppression leads to a progressive loss in T-cell function, even in tumors that are regressing. These novel observations that T cells produced by therapeutic intervention can instigate a rapid adaptive immunosuppressive response within the tumor have important implications for clinical implementation of immunotherapies.

in vivo LAG-3 neutralization, in vitro LAG-3 neutralization
Durham, N. M., et al. (2014). "Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo" PLoS One 9(11): e109080. PubMed

Lymphocyte Activation Gene ā€“ 3 (LAG-3) is an immune checkpoint molecule that regulates both T-cell activation and homeostasis. However, the molecular mechanisms underlying LAG-3ā€™s function are generally unknown. Using a model in which LAG-3 blockade or absence reliably augmented homeostatic proliferation in vivo, we found that IL-2 and STAT5 are critical for LAG-3 function. Similarly, LAG-3 blockade was ineffective in the absence of regulatory T-cells (Treg), suggesting an important role for LAG-3 in either the responsiveness of conventional T-cells (Tconv) to regulation, or a relative defect in the ability of LAG-3 KO regulatory T-cells (Treg) to suppress the proliferation of Tconv. In this model, LAG-3 KO Treg suppressed proliferation in a manner fairly similar to wild-type (WT) Treg, but LAG-3 KO Tconv were relatively resistant to suppression. Further studies also identified a role for LAG-3 in the induction/expansion of Treg. Finally, we found that LAG-3 blockade (or knockout) led to a relative skewing of naive CD4 T-cells toward a TH1 phenotype both in vitro and in in vivo. Together, these data suggest that LAG-3 expression on Tconv cells makes them more susceptible to Treg based suppression, and also regulates the development of a TH1 T-cell response.

in vitro LAG-3 neutralization, Flow Cytometry
Erickson, J. J., et al. (2014). "Programmed death-1 impairs secondary effector lung CD8(+) T cells during respiratory virus reinfection" J Immunol 193(10): 5108-5117. PubMed

Reinfections with respiratory viruses are common and cause significant clinical illness, yet precise mechanisms governing this susceptibility are ill defined. Lung Ag-specific CD8(+) T cells (T(CD8)) are impaired during acute viral lower respiratory infection by the inhibitory receptor programmed death-1 (PD-1). To determine whether PD-1 contributes to recurrent infection, we first established a model of reinfection by challenging B cell-deficient mice with human metapneumovirus (HMPV) several weeks after primary infection, and found that HMPV replicated to high titers in the lungs. A robust secondary effector lung TCD8 response was generated during reinfection, but these cells were more impaired and more highly expressed the inhibitory receptors PD-1, LAG-3, and 2B4 than primary T(CD8). In vitro blockade demonstrated that PD-1 was the dominant inhibitory receptor early after reinfection. In vivo therapeutic PD-1 blockade during HMPV reinfection restored lung T(CD8) effector functions (i.e., degranulation and cytokine production) and enhanced viral clearance. PD-1 also limited the protective efficacy of HMPV epitope-specific peptide vaccination and impaired lung T(CD8) during heterotypic influenza virus challenge infection. Our results indicate that PD-1 signaling may contribute to respiratory virus reinfection and evasion of vaccine-elicited immune responses. These results have important implications for the design of effective vaccines against respiratory viruses.

in vivo LAG-3 neutralization, Flow Cytometry
Goding, S. R., et al. (2013). "Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma" J Immunol 190(9): 4899-4909. PubMed

Recurrent solid malignancies are often refractory to standard therapies. Although adoptive T cell transfer may benefit select individuals, the majority of patients succumb to their disease. To address this important clinical dilemma, we developed a mouse melanoma model in which initial regression of advanced disease was followed by tumor recurrence. During recurrence, Foxp3(+) tumor-specific CD4(+) T cells became PD-1(+) and represented >60% of the tumor-specific CD4(+) T cells in the host. Concomitantly, tumor-specific CD4(+) T effector cells showed traits of chronic exhaustion, as evidenced by their high expression of the PD-1, TIM-3, 2B4, TIGIT, and LAG-3 inhibitory molecules. Although blockade of the PD-1/PD-L1 pathway with anti-PD-L1 Abs or depletion of tumor-specific regulatory T cells (Tregs) alone failed to reverse tumor recurrence, the combination of PD-L1 blockade with tumor-specific Treg depletion effectively mediated disease regression. Furthermore, blockade with a combination of anti-PD-L1 and anti-LAG-3 Abs overcame the requirement to deplete tumor-specific Tregs. In contrast, successful treatment of primary melanoma with adoptive cell therapy required only Treg depletion or Ab therapy, underscoring the differences in the characteristics of treatment between primary and relapsing cancer. These data highlight the need for preclinical development of combined immunotherapy approaches specifically targeting recurrent disease.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Combining toll-like receptor agonists with immune checkpoint blockade affects antitumor vaccine efficacy.

    In Journal for Immunotherapy of Cancer on 3 May 2024 by Jeon, D., Hill, E., et al.

    PubMed

    T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models. TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry. Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and Ī±CTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or Ī±CTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with Ī±PD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of Ī±PD-1. Combining vaccination with TLR agonists and Ī±CTLA-4 or Ī±LAG-3 showed greater antitumor than with combinations with Ī±TIM-3 or Ī±VISTA. The combination of TLR agonists and Ī±CTLA-4 or Ī±LAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using Ī±PD-1 due to activation of Tregs when Ī±PD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines. Ā© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Differential requirements for CD4+ T cells in the efficacy of the anti-PD-1+LAG-3 and anti-PD-1+CTLA-4 combinations in melanoma flank and brain metastasis models.

    In Journal for Immunotherapy of Cancer on 6 December 2023 by Phadke, M. S., Li, J., et al.

    PubMed

    Although the anti-PD-1+LAG-3 and the anti-PD-1+CTLA-4 combinations are effective in advanced melanoma, it remains unclear whether their mechanisms of action overlap. We used single cell (sc) RNA-seq, flow cytometry and IHC analysis of responding SM1, D4M-UV2 and B16 melanoma flank tumors and SM1 brain metastases to explore the mechanism of action of the anti-PD-1+LAG-3 and the anti-PD-1+CTLA-4 combination. CD4+ andā€‰CD8+ Tā€‰cell depletion, tetramer binding assays and ELISPOT assays were used to demonstrate the unique role of CD4+Tā€‰cell help in the antitumor effects of the anti-PD-1+LAG-3 combination. The anti-PD-1+CTLA-4 combination was associated with the infiltration of FOXP3+regulatoryā€‰CD4+ cells (Tregs), fewer activated CD4+T cells and the accumulation of a subset of IFNĪ³ secreting cytotoxic CD8+T cells, whereas the anti-PD-1+LAG-3 combination led to the accumulation of CD4+T helper cells that expressed CXCR4, TNFSF8, IL21R and a subset of CD8+T cells with reduced expression of cytotoxic markers. T cell depletion studies showed a requirement for CD4+T cells for the anti-PD-1+LAG-3 combination, but not the PD-1-CTLA-4 combination at both flank and brain tumor sites. In anti-PD-1+LAG-3 treated tumors, CD4+Tā€‰cell depletion was associated with fewer activated (CD69+) CD8+T cells and impaired IFNĪ³ release but, conversely, increased numbers of activated CD8+T cells and IFNĪ³ release in anti-PD-1+CTLA-4 treated tumors. Together these studies suggest that these two clinically relevant immune checkpoint inhibitor (ICI) combinations have differential effects on CD4+Tā€‰cell polarization, which in turn, impacted cytotoxic CD8+Tā€‰cell function. Further insights into the mechanisms of action/resistance of these clinically-relevant ICI combinations will allow therapy to be further personalized. Ā© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Noninvasive Monitoring of Immunotherapy in Lung Cancer by Lymphocyte Activation Gene 3 PET Imaging of Tumor-Infiltrating Lymphocytes.

    In Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine on 22 November 2023 by Quan, Z., Han, Z., et al.

    PubMed

    Although immunotherapy has revolutionized the entire cancer treatment landscape, small fractions of patients respond to immunotherapy. Early identification of responders may improve patient management during immunotherapy. In this study, we evaluated a PET approach for monitoring immunotherapy in lung cancer by imaging the upregulation of lymphocyte activation gene 3 (LAG-3)-expressing (LAG-3+) tumor-infiltrating lymphocytes (TILs). Methods: We synthesized a LAG-3-targeted molecular imaging probe, [68Ga]Ga-NOTA-C25 and performed a series of inĀ vitro and inĀ vivo assays to test its specificity. Next, [68Ga]Ga-NOTA-C25 PET was used to monitor immunotherapy in murine lung cancer-bearing mice and in humanized mouse models for assessing clinical translational potential, with confirmation by immunostaining and flow cytometry analysis. Results: [68Ga]Ga-NOTA-C25 PET could noninvasively detect intertumoral differences in LAG-3+ TIL levels in different tumor models. Importantly, in Lewis lung carcinoma tumor models treated with an agonist of a stimulator of interferon genes, [68Ga]Ga-NOTA-C25 PET also detected an immunophenotyping transition of the tumor from "cold" to "hot" before changes in tumor size. Meanwhile, animals carrying "hot" tumor showed more significant tumor inhibition and longer survival than those carrying "cold" tumor. [68Ga]Ga-NOTA-C25 PET also showed markedly higher tumor uptake in immune system-humanized mice carrying human non-small cell lung cancer than immunodeficient models. Conclusion: [68Ga]Ga-NOTA-C25 PET could be used to noninvasively monitor the early response to immunotherapy by imaging LAG-3+ TILs in lung cancer. [68Ga]Ga-NOTA-C25 PET also exhibited excellent translational potential, with great significance for the precise management of lung cancer patients receiving immunotherapy. Ā© 2024 by the Society of Nuclear Medicine and Molecular Imaging.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    • ,
    • Stem Cells and Developmental Biology
    Reciprocal transmission of activating and inhibitory signals and cell fate in regenerating TĀ cells.

    In Cell Reports on 31 October 2023 by Wang, P. H., Washburn, R. S., et al.

    PubMed

    The ability of activated progenitor TĀ cells to self-renew while producing differentiated effector cell descendants may underlie immunological memory and persistent responses to ongoing infection. The nature of stem-like TĀ cells responding to cancer and during treatment with immunotherapy is not clear. The subcellular organization of dividing progenitor CD8+ TĀ cells from mice challenged with syngeneic tumors is examined here. Three-dimensional microscopy reveals an activating hub composed of polarized CD3, CD28, and phosphatidylinositol 3-kinase (PI3K) activity at the putative immunological synapse with an inhibitory hub composed of polarized PD-1 and CD73 at the opposite pole of mitotic blasts. Progenitor TĀ cells from untreated and inhibitory checkpoint blockade-treated mice yield a differentiated TCF1- daughter cell, which inherits the PI3K activation hub, alongside a discordantly fated, self-renewing TCF1+ sister cell. Dynamic organization of opposite activating and inhibitory signaling poles in mitotic lymphocytes may account for the enigmatic durability of specific immunity. Copyright Ā© 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Cancer Research
    An Engineered IFNĪ³-Antibody Fusion Protein with Improved Tumor-Homing Properties.

    In Pharmaceutics on 22 January 2023 by Di Nitto, C., Gilardoni, E., et al.

    PubMed

    Interferon-gamma (IFNĪ³) is one of the central cytokines produced by the innate and adaptive immune systems. IFNĪ³ directly favors tumor growth control by enhancing the immunogenicity of tumor cells, induces IP-10 secretion facilitating (CXCR3+) immune cell infiltration, and can prime macrophages to an M1-like phenotype inducing proinflammatory cytokine release. We had previously reported that the targeted delivery of IFNĪ³ to neoplastic lesions may be limited by the trapping of IFNĪ³-based products by cognate receptors found in different organs. Here we describe a novel fusion protein consisting of the L19 antibody, specific to the alternatively spliced extra-domain B of fibronectin (EDB), fused to a variant of IFNĪ³ with reduced affinity to its cognate receptor. The product (named L19-IFNĪ³ KRG) selectively localized to tumors in mice, showed favorable pharmacokinetic profiles in monkeys and regained biological activity upon antigen binding. The fusion protein was investigated in two murine models of cancer, both as monotherapy and in combination with therapeutic modalities which are frequently used for cancer therapy. L19-IFNĪ³ KRG induced tumor growth retardation and increased the intratumoral concentration of T cells and NK cells in combination with anti-PD-1.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer.

    In Nature Cancer on 1 January 2023 by Gulhati, P., Schalck, A., et al.

    PubMed

    Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease. Ā© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    CD11b+DIP2A+LAG3+ cells facilitate immune dysfunction in colorectal cancer.

    In American Journal of Cancer Research on 8 December 2021 by Kudo-Saito, C., Ogiwara, Y., et al.

    PubMed

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, and tumor metastasis is the leading cause of death. Targeting immune inhibitory checkpoint inhibitory pathways has attracted great attention, since the therapeutic efficacy induced by the specific blocking antibodies has been demonstrated even in metastatic CRC patients. However, the clinical outcome is low in many cases, and thus more effective treatments are needed in the clinical settings. A SPARC family member follistatin-like 1 (FSTL1) is known as a key driver of tumor metastasis in various types of cancer. However, the immunological roles of the FSTL1 in the CRC pathogenesis remain to be elucidated. In this study, we investigated the molecular mechanisms underlying the refractory FSTL1+ CRC using murine and human FSTL1-transduced CRC cells. Also, based on the results, we evaluated anti-tumor efficacy induced by agents targeting the identified molecules using murine CRC metastasis models, and validated the clinical relevancy of the basic findings using tumor tissues and peripheral blood obtained from CRC patients. FSTL1 transduction conferred EMT-like properties, such as low proliferative (dormant) and high invasive abilities, on tumor cells. When the transfectants were subcutaneously implanted in mice, CD11b+DIP2A+LAG3+ cells were abundantly expanded locally and systemically in the mice. Simultaneously, apoptotic T cells increased and were lastly excluded from the tumor tissues, allowing tumor aggravation leading to resistance to anti-PD1/PDL1 treatment. Blocking FSTL1 and LAG3, however, significantly suppressed the apoptosis induction, and successfully induced anti-tumor immune responses in the CRC metastasis models. Both treatments synergized in providing better prognosis of the mice. FSTL1 was significantly upregulated in tumor tissues and peripheral blood of CRC patients, and the CD11b+DIP2A+LAG3+ cells were significantly expanded in the PBMCs as compared to those of healthy donors. The expansion level was significantly correlated with decrease of potent Ki67+GZMB+ CTLs. These results suggest that the FSTL1-induced CD11b+DIP2A+LAG3+ cells are a key driver of immune dysfunction in CRC. Targeting the FSTL1-LAG3 axis may be a promising strategy for treating metastatic CRC, and anti-FSTL1/LAG3 combination regimen may be practically useful in the clinical settings. AJCR Copyright Ā© 2021.

    • Immunology and Microbiology
    An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade.

    In Journal for Immunotherapy of Cancer on 1 December 2021 by Zuo, S., Wei, M., et al.

    PubMed

    In addition to directly lysing tumors, oncolytic viruses also induce antitumor immunity by recruiting and activating immune cells in the local tumor microenvironment. However, the activation of the immune cells induced by oncolytic viruses is always accompanied by high-level expression of immune checkpoints in these cells, which may reduce the efficacy of the oncolytic viruses. The aim of this study is to arm the oncolytic vaccinia virus (VV) with immune checkpoint blockade to enhance its antitumor efficacy. Through homologous recombination with the parental VV, an engineered VV-scFv-TIGIT was produced, which encodes a single-chain variable fragment (scFv) targeting T-cell immunoglobulin and ITIM domain (TIGIT). The antitumor efficacy of the VV-scFv-TIGIT was explored in several subcutaneous and ascites tumor models. The antitumor efficacy of VV-scFv-TIGIT combined with programmed cell death 1 (PD-1) or lymphocyte-activation gene 3 (LAG-3) blockade was also investigated. The VV-scFv-TIGIT effectively replicated in tumor cells and lysed them, and prompt the infected tumor cells to secret the functional scFv-TIGIT. Compared with control VV, intratumoral injection of VV-scFv-TIGIT in several mouse subcutaneous tumor models showed superior antitumor efficacy, accompanied by more T cell infiltration and a higher degree of CD8+ T cells activation. Intraperitoneal injection of VV-scFv-TIGIT in a mouse model of malignant ascites also significantly improved T cell infiltration and CD8+ T cell activation, resulting in more than 90% of the tumor-bearing mice being cured. Furthermore, the antitumor immune response induced by VV-scFv-TIGIT was dependent on CD8+ T cells which mediated a long-term immunological memory and a systemic antitumor immunity against the same tumor. Finally, the additional combination of PD-1 or LAG-3 blockade further enhanced the antitumor efficacy of VV-scFv-TIGIT, increasing the complete response rate of tumor-bearing mice. Oncolytic virotherapy using engineered VV-scFv-TIGIT was an effective strategy for cancer immunotherapy. Administration of VV-scFv-TIGIT caused a profound reshaping of the suppressive tumor microenvironment from 'cold' to 'hot' status. VV-scFv-TIGIT also synergized with PD-1 or LAG-3 blockade to achieve a complete response to tumors with poor response to VV or immune checkpoint blockade monotherapy. Ā© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Divergent fates of antigen-specific CD8+ TĀ cell clones in mice with acute leukemia.

    In Cell Reports on 9 November 2021 by Chen, X., MacNabb, B. W., et al.

    PubMed

    The existence of a dysfunctional CD8+ TĀ cell state in cancer is well established. However, the degree to which CD8+ TĀ cell fates are influenced by the context in which they encounter cognate tumor antigen is less clear. We previously demonstrated that CD8+ TĀ cells reactive to a model leukemia antigen were deleted by antigen cross-presenting type 1 conventional dendritic cells (cDC1s). Here, through a study of TĀ cell receptor (TCR) transgenic CD8+ TĀ cells (TCRTg101) reactive to a native C1498 leukemia cell antigen, we uncover a different mode of TĀ cell tolerance in which TCRTg101 undergo progressive expansion and differentiation into an exhausted state. Antigen encounter by TCRTg101 requires leukemia cell major histocompatibility complex (MHC)-I expression and is independent of DCs, implying that leukemia cells directly mediate the exhausted TCRTg101 phenotype. Collectively, our data reveal that leukemia antigens are presented to CD8+ TĀ cells via discrete pathways, leading to distinct tolerant states. Copyright Ā© 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells.

    In Nature Biomedical Engineering on 1 November 2021 by Xue, G., Wang, Z., et al.

    PubMed

    Antigen release resulting from the death of tumour cells induced by chemotherapies and targeted therapies can augment the antitumour responses induced by immune checkpoint blockade (ICB). However, tumours responding to ICB therapies often become resistant to them. Here we show that the specific targeting of tumour cells promotes the growth of tumour-cell variants that are resistant to ICB, and that the acquired resistance can be overcome via the concurrent depletion of tumour cells and of major types of immunosuppressive cell via a monoclonal antibody binding the enzyme CD73, which we identified as highly expressed on tumour cells and on regulatory T cells, myeloid-derived suppressor cells and tumour-associated macrophages, but not on cytolytic T lymphocytes, natural killer cells and dendritic cells. In mice with murine tumours, the systemic administration of anti-PD1 antibodies and anti-CD73 antibodies conjugated to a near-infrared dye prevented near-infrared-irradiated tumours from acquiring resistance to ICB and resulted in the eradication of advanced tumours. The elimination of immunosuppressive cells may overcome acquired resistance to ICB across a range of tumour types and combination therapies. Ā© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance.

    In Frontiers in Immunology on 12 October 2021 by Maulloo, C. D., Cao, S., et al.

    PubMed

    Inverse vaccines that tolerogenically target antigens to antigen-presenting cells (APCs) offer promise in prevention of immunity to allergens and protein drugs and treatment of autoimmunity. We have previously shown that targeting hepatic APCs through intravenous injection of synthetically glycosylated antigen leads to effective induction of antigen-specific immunological tolerance. Here, we demonstrate that targeting these glycoconjugates to lymph node (LN) APCs under homeostatic conditions leads to local and increased accumulation in the LNs compared to unmodified antigen and induces a tolerogenic state both locally and systemically. Subcutaneous administration directs the polymeric glycoconjugate to the draining LN, where the glycoconjugated antigen generates robust antigen-specific CD4+ and CD8+ T cell tolerance and hypo-responsiveness to antigenic challenge via a number of mechanisms, including clonal deletion, anergy of activated T cells, and expansion of regulatory T cells. Lag-3 up-regulation on CD4+ and CD8+ T cells represents an essential mechanism of suppression. Additionally, presentation of antigen released from the glycoconjugate to naĆÆve T cells is mediated mainly by LN-resident CD8+ and CD11b+ dendritic cells. Thus, here we demonstrate that antigen targeting via synthetic glycosylation to impart affinity for APC scavenger receptors generates tolerance when LN dendritic cells are the cellular target. Copyright Ā© 2021 Maulloo, Cao, Watkins, Raczy, Solanki, Nguyen, Reda, Shim, Wilson, Swartz and Hubbell.

    • Mus musculus (House mouse)
    • ,
    • Biochemistry and Molecular biology
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Myeloid cell-based delivery of IFN-Ī³ reprograms the leukemia microenvironment and induces anti-tumoral immune responses.

    In EMBO Molecular Medicine on 7 October 2021 by Mucci, A., Antonarelli, G., et al.

    PubMed

    The immunosuppressive microenvironment surrounding tumor cells represents a key cause of treatment failure. Therefore, immunotherapies aimed at reprogramming the immune system have largely spread in the past years. We employed gene transferĀ into hematopoietic stem and progenitor cells to selectively express anti-tumoral cytokines in tumor-infiltrating monocytes/macrophages. We show that interferon-Ī³ (IFN-Ī³) reduced tumor progression in mouse models of B-cell acute lymphoblastic leukemia (B-ALL) and colorectal carcinoma (MC38). Its activity depended on the immune system's capacity to respond to IFN-Ī³ and drove the counter-selection of leukemia cells expressing surrogate antigens. Gene-based IFN-Ī³ delivery induced antigen presentation in the myeloid compartment and on leukemia cells, leading to a wave of T cell recruitment and activation, with enhanced clonal expansion of cytotoxic CD8+ T lymphocytes. The activity of IFN-Ī³ was further enhanced by either co-delivery of tumor necrosis factor-Ī± (TNF-Ī±) or by drugs blocking immunosuppressive escape pathways, with the potential to obtain durable responses. Ā© 2021 The Authors. Published under the terms of the CC BY 4.0 license.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Differential Expression of CD49a and CD49b Determines Localization and Function of Tumor-Infiltrating CD8+ T Cells.

    In Cancer Immunology Research on 1 May 2021 by Melssen, M. M., Lindsay, R. S., et al.

    PubMed

    CD8+ T-cell infiltration and effector activity in tumors are correlated with better overall survival of patients, suggesting that the ability of T cells to enter and remain in contact with tumor cells supports tumor control. CD8+ T cells express the collagen-binding integrins CD49a and CD49b, but little is known about their function or how their expression is regulated in the tumor microenvironment (TME). Here, we found that tumor-infiltrating CD8+ T cells initially expressed CD49b, gained CD49a, and then lost CD49b over the course of tumor outgrowth. This differentiation sequence was driven by antigen-independent elements in the TME, although T-cell receptor (TCR) stimulation further increased CD49a expression. Expression of exhaustion markers and CD49a associated temporally but not mechanistically. Intratumoral CD49a-expressing CD8+ T cells failed to upregulate TCR-dependent Nur77 expression, whereas CD69 was constitutively expressed, consistent with both a lack of productive antigen engagement and a tissue-resident memory-like phenotype. Imaging T cells in live tumor slices revealed that CD49a increased their motility, especially of those in close proximity to tumor cells, suggesting that it may interfere with T-cell recognition of tumor cells by distracting them from productive engagement, although we were not able to augment productive engagement by short-term CD49a blockade. CD49b also promoted relocalization of T cells at a greater distance from tumor cells. Thus, our results demonstrate that expression of these integrins affects T-cell trafficking and localization in tumors via distinct mechanisms, and suggests a new way in which the TME, and likely collagen, could promote tumor-infiltrating CD8+ T-cell dysfunction. Ā©2021 American Association for Cancer Research.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma.

    In Molecular Therapy on 3 February 2021 by Zhang, L., Wang, W., et al.

    PubMed

    Pancreatic ductal adenocarcinoma (PDAC) is the major type of pancreatic malignancy with very poor prognosis. Despite the promising results of immune checkpoint inhibitors (ICIs) in some solid tumors, immunotherapy is less effective for PDAC due to its immunosuppressive tumor microenvironment (TME). In this report, we established an immunocompetent syngeneic PDAC model and investigated the effect of oncolytic herpes simplex virus-1 (oHSV) on the composition of TME immune cells. The oHSV treatment significantly reduced tumor burden and prolonged the survival of tumor-bearing mice. Further, by single cell RNA sequencing (scRNA-seq) and multicolor fluorescence-activated cell sorting (FACS) analysis, we demonstrated that oHSV administration downregulated tumor-associated macrophages (TAMs), especially the anti-inflammatory macrophages, and increased the percentage of tumor-infiltrating lymphocytes, including activated cytotoxic CD8+ TĀ cells and T helper (Th)1 cells. Besides, the combination of oHSV and immune checkpoint modulators extended the lifespan of the tumor-bearing mice. Overall, our data suggested that oHSV reshapes the TME of PDAC by boosting the immune activity and leads to improved responsiveness of PDAC to immunotherapy. Copyright Ā© 2020 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

    • Cardiovascular biology
    • ,
    • Immunology and Microbiology
    Blockade of LAG-3 in PD-L1-Deficient Mice Enhances Clearance of Blood Stage Malaria Independent of Humoral Responses.

    In Frontiers in Immunology on 2 February 2021 by Furtado, R., Chorro, L., et al.

    PubMed

    T cells expressing high levels of inhibitory receptors such as PD-1 and LAG-3 are a hallmark of chronic infections and cancer. Checkpoint blockade therapies targeting these receptors have been largely validated as promising strategies to restore exhausted T cell functions and clearance of chronic infections and tumors. The inability to develop long-term natural immunity in malaria-infected patients has been proposed to be at least partially accounted for by sustained expression of high levels of inhibitory receptors on T and B lymphocytes. While blockade or lack of PD-1/PD-L1 and/or LAG-3 was reported to promote better clearance of Plasmodium parasites in various mouse models, how exactly blockade of these pathways contributes to enhanced protection is not known. Herein, using the mouse model of non-lethal P. yoelii (Py) infection, we reveal that the kinetics of blood parasitemia as well as CD4+ T follicular helper (TFH) and germinal center (GC) B cell responses are indistinguishable between PD-1-/-, PD-L1-/- and WT mice. Yet, we also report that monoclonal antibody (mAb) blockade of LAG-3 in PD-L1-/- mice promotes accelerated control of blood parasite growth and clearance, consistent with prior therapeutic blockade experiments. However, neither CD4+ TFH and GC B cell responses, nor parasite-specific Ab serum titers and capacity to transfer protection differed. We also found that i) the majority of LAG-3+ cells are T cells, ii) selective depletion of CD4+ but not CD8+ T cells prevents anti-LAG-3-mediated protection, and iii) production of effector cytokines by CD4+ T cells is increased in anti-LAG-3-treated versus control mice. Thus, taken together, these results are consistent with a model in which blockade and/or deficiency of PD-L1 and LAG-3 on parasite-specific CD4+ T cells unleashes their ability to effectively clear blood parasites, independently from humoral responses. Copyright Ā© 2021 Furtado, Chorro, Zimmerman, Guillen, Spaulding, Chin, Daily and Lauvau.

    • Cell Culture
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Oxysophocarpine suppresses hepatocellular carcinoma growth and sensitizes the therapeutic blockade of anti-Lag-3 via reducing FGL1 expression.

    In Cancer Medicine on 1 October 2020 by Wang, J., Wei, W., et al.

    PubMed

    Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatments and ranks as the second most lethal tumor. Immunotherapy has brought great hope for HCC treatment. Oxysophocarpine is a bioactive alkaloid which poses various pharmacological functions including neuroprotective, anti-virus, anti-convulsant, and anti-nociception. However, there is little systematic study of Oxysophocarpine against HCC and its underlying potential and mechanism combined with immunotherapy in HCC treatment remain poorly unknown. This study was aimed to investigate whether Oxysophocarpine can distinctly suppress HCC cells and sensitize the immunotherapy of CD8+ T cells against HCC. We used HepG2, Hepa1-6, and primary CD8+ T cells to perform in vitro assays and Hepa1-6 subcutaneous tumor to conduct in vivo assay. Oxysophocarpine inhibited the proliferation and increased the apoptosis of HepG2 and Hepa1-6 cells, meanwhile suppressed the migration of HepG2 and Hepa1-6 cells. Oxysophocarpine sensitized the Lag-3 immunotherapy effect of CD8+ T cells against HCC in vivo and in vitro by decreasing Fibrinogen-like protein 1 (FGL1) expression through downregulating IL-6-mediated JAK2/STAT3 signaling, whereas Oxysophocarpine treatment had a little effect of CD8+ T cells cytotoxicity function against HCC with PD-1, Tim-3, or TIGIT blockade. Our studies provided preclinical basis for clinical application of Oxysophocarpine. Ā© 2020 The Authors. Cancer Medicine published by John Wiley Sons Ltd.

    • Immunology and Microbiology
    Enhanced antitumor immunity through sequential targeting of PI3KĪ“ and LAG3.

    In Journal for Immunotherapy of Cancer on 1 October 2020 by Lauder, S. N., Smart, K., et al.

    PubMed

    Despite striking successes, immunotherapies aimed at increasing cancer-specific T cell responses are unsuccessful in most patients with cancer. Inactivating regulatory T cells (Treg) by inhibiting the PI3KĪ“ signaling enzyme has shown promise in preclinical models of tumor immunity and is currently being tested in early phase clinical trials in solid tumors. Mice bearing 4T1 mammary tumors were orally administered a PI3KĪ“ inhibitor (PI-3065) daily and tumor growth, survival and T cell infiltrate were analyzed in the tumor microenvironment. A second treatment schedule comprised PI3KĪ“ inhibitor with anti-LAG3 antibodies administered sequentially 10 days later. As observed in human immunotherapy trials with other agents, immunomodulation by PI3KĪ“-blockade led to 4T1 tumor regressor and non-regressor mice. Tumor infiltrating T cells in regressors were metabolically fitter than those in non-regressors, with significant enrichments of antigen-specific CD8+ T cells, T cell factor 1 (TCF1)+ T cells and CD69- T cells, compatible with induction of a sustained tumor-specific T cell response. Treg numbers were significantly reduced in both regressor and non-regressor tumors compared with untreated tumors. The remaining Treg in non-regressor tumors were however significantly enriched with cells expressing the coinhibitory receptor LAG3, compared with Treg in regressor and untreated tumors. This striking difference prompted us to sequentially block PI3KĪ“ and LAG3. This combination enabled successful therapy of all mice, demonstrating the functional importance of LAG3 in non-regression of tumors on PI3KĪ“ inhibition therapy. Follow-up studies, performed using additional cancer cell lines, namely MC38 and CT26, indicated that a partial initial response to PI3KĪ“ inhibition is an essential prerequisite to a sequential therapeutic benefit of anti-LAG3 antibodies. These data indicate that LAG3 is a key bottleneck to successful PI3KĪ“-targeted immunotherapy and provide a rationale for combining PI3KĪ“/LAG3 blockade in future clinical studies. Ā© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Biochemistry and Molecular biology
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Granzyme B PET Imaging of Immune Checkpoint Inhibitor Combinations in Colon Cancer Phenotypes.

    In Molecular Imaging and Biology : MIB : the Official Publication of the Academy of Molecular Imaging on 1 October 2020 by Goggi, J. L., Tan, Y. X., et al.

    PubMed

    Immune checkpoint inhibitor (ICI) monotherapy and combination regimens are being actively pursued as strategies to improve durable response rates in cancer patients. However, the biology surrounding combination therapies is not well understood and may increase the likelihood of immune-mediated adverse events. Accurate stratification of ICI response by non-invasive PET imaging may help ensure safe therapy management across a wide number of cancer phenotypes. We have assessed the ability of a fluorine-labelled peptide, [18F]AlF-mNOTA-GZP, targeting granzyme B, to stratify ICI response in two syngeneic models of colon cancer, CT26 and MC38. In vivo tumour uptake of [18F]AlF-mNOTA-GZP following ICI monotherapy, or in combination with PD-1 was characterised and correlated with changes in tumour-associated immune cell populations. [18F]AlF-mNOTA-GZP showed good predictive ability and correlated well with changes in tumour-associated T cells, especially CD8+ T cells; however, overall uptake and response to monotherapy or combination therapies was very different in the CT26 and MC38 tumours, likely due to the immunostimulatory environment imbued by the MSI-high phenotype in MC38 tumours. [18F]AlF-mNOTA-GZP uptake correlates well with changes in CD8+ T cell populations and is able to stratify tumour response to a range of ICIs administered as monotherapies or in combination. However, tracer uptake can be significantly affected by preexisting phenotypic abnormalities potentially confusing data interpretation.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    FS118, a Bispecific Antibody Targeting LAG-3 and PD-L1, Enhances T-Cell Activation Resulting in Potent Antitumor Activity.

    In Clinical Cancer Research on 1 July 2020 by Kraman, M., Faroudi, M., et al.

    PubMed

    Although programmed death-ligand 1 (PD-L1) antibody-based therapy has improved the outcome of patients with cancer, acquired resistance to these treatments limits their clinical efficacy. FS118 is a novel bispecific, tetravalent antibody (mAb2) against human lymphocyte activation gene-3 (LAG-3) and PD-L1 with the potential to reinvigorate exhausted immune cells and overcome resistance mechanisms to PD-L1 blockade. Here, using FS118 and a murine surrogate, we characterized the activity and report a novel mechanism of action of this bispecific antibody. This study characterizes the binding activity and immune function of FS118 in cell lines and human peripheral blood mononuclear cells and further investigates its antitumor activity and mechanism of action using a surrogate murine bispecific antibody (mLAG-3/PD-L1 mAb2). FS118 demonstrated simultaneous binding to LAG-3 and PD-L1 with high affinity and comparable or better activity than the combination of the single component parts of the mAb2 in blocking LAG-3- and PD-L1-mediated immune suppression and enhancing T-cell activity. In syngeneic tumor mouse models, mLAG-3/PD-L1 mAb2 significantly suppressed tumor growth. Mechanistic studies revealed decreased LAG-3 expression on T cells following treatment with the mouse surrogate mLAG-3/PD-L1 mAb2, whereas LAG-3 expression increased upon treatment with the combination of mAbs targeting LAG-3 and PD-L1. Moreover, following binding of mLAG-3/PD-L1 mAb2 to target-expressing cells, mouse LAG-3 is rapidly shed into the blood. This study demonstrates a novel benefit of the bispecific approach over a combination of mAbs and supports the further development of FS118 for the treatment of patients with cancer. Ā©2020 American Association for Cancer Research.

    • Immunology and Microbiology
    Oncolytic virus-derived type I interferon restricts CAR T cell therapy.

    In Nature Communications on 24 June 2020 by Evgin, L., Huff, A. L., et al.

    PubMed

    The application of adoptive T cell therapies, including those using chimeric antigen receptor (CAR)-modified T cells, to solid tumors requires combinatorial strategies to overcome immune suppression associated with the tumor microenvironment. Here we test whether the inflammatory nature of oncolytic viruses and their ability to remodel the tumor microenvironment may help to recruit and potentiate the functionality of CAR T cells. Contrary to our hypothesis, VSVmIFNĪ² infection is associated with attrition of murine EGFRvIII CAR T cells in a B16EGFRvIII model, despite inducing a robust proinflammatory shift in the chemokine profile. Mechanistically, type I interferon (IFN) expressed following infection promotes apoptosis, activation, and inhibitory receptor expression, and interferon-insensitive CAR T cells enable combinatorial therapy with VSVmIFNĪ². Our study uncovers an unexpected mechanism of therapeutic interference, and prompts further investigation into the interaction between CAR T cells and oncolytic viruses to optimize combination therapy.

1 2