InVivoMAb anti-mouse/human TYRP1/TRP1 (gp75)
Product Details
The TA99 monoclonal antibody reacts with human and mouse tyrosinase-related protein 1 (TYRP1) also known as glycoprotein 75 (gp75) and MEL-5. TYRP1 is a melanocyte-specific enzyme involved in melanin synthesis as well as the proliferation and cell death of melanocytes. TYRP1 is critical for skin, eye, and hair pigmentation.Specifications
Isotype | Mouse IgG2a, κ |
---|---|
Recommended Isotype Control(s) | InVivoMAb mouse IgG2a isotype control, unknown specificity |
Recommended Dilution Buffer | InVivoPure pH 7.0 Dilution Buffer |
Conjugation | This product is unconjugated. Conjugation is available via our Antibody Conjugation Services. |
Immunogen | SK-MEL-23 melanoma cells |
Reported Applications |
in vivo triggering of FcγRs Immunofluorescence Flow cytometry |
Formulation |
PBS, pH 7.0 Contains no stabilizers or preservatives |
Endotoxin |
<2EU/mg (<0.002EU/μg) Determined by LAL gel clotting assay |
Purity |
>95% Determined by SDS-PAGE |
Sterility | 0.2 µm filtration |
Production | Purified from cell culture supernatant in an animal-free facility |
Purification | Protein G |
RRID | AB_10949462 |
Molecular Weight | 150 kDa |
Storage | The antibody solution should be stored at the stock concentration at 4°C. Do not freeze. |
Recommended Products
in vivo triggering of FcγRs
Lehmann, B., et al. (2017). "Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response" Sci Immunol 2(7): 10.1126/sciimmunol.aah6413. PubMed
Despite recent advances in activating immune cells to target tumors, the presence of some immune cells, such as tumor-associated macrophages (TAMs) or tumor-associated neutrophils (TANs), may promote rather than inhibit tumor growth. However, it remains unclear how antibody-dependent tumor immunotherapies, such as cytotoxic or checkpoint control antibodies, affect different TAM or TAN populations, which abundantly express activating Fc gamma receptors. In this study, we show that the tissue environment determines which cellular effector pathways are responsible for antibody-dependent tumor immunotherapy. Although TAMs derived from Ly6C high monocytes recruited by the CCL2-CCR2 axis were critical for tumor immunotherapy of skin tumors, the destruction of lung tumors was CCL2-independent and required the presence of colony-stimulating factor 2–dependent tissue-resident macrophages. Our findings suggest that TAMs may have a dual role not only in promoting tumor growth in certain tissue environments on the one hand but also in contributing to tumor cell destruction during antibody-mediated immunotherapy on the other hand. DOI: 10.1126/sciimmunol.aah6413
Flow Cytometry, Immunofluorescence
Dennis, M. K., et al. (2015). "BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery" J Cell Biol 209(4): 563-577. PubMed
Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.
Immunofluorescence
Duval, C., et al. (2014). "Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging" PLoS One 9(12): e114182. PubMed
To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is associated with photo-aging.
in vivo triggering of FcγRs
Ly, L. V., et al. (2013). "Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma" J Immunol 190(1): 489-496. PubMed
mAbs binding to tumor-associated surface Ags are therapeutically applied in a range of malignancies. Therapeutic vaccination only recently met with clinical success, and the first cancer vaccine received U.S. Food and Drug Administration approval last year. To improve current protocols, we combined peptide vaccines with mAb to the tyrosinase-related protein (TRP)-1 surface Ag for the treatment of B16F10 skin melanoma. Vaccine formulations with synthetic long peptides failed to elicit strong CD8 T cell responses to self-differentiation Ags gp100 and TRP-2, whereas altered peptide sequences recruited gp100-specific CD8 T cells from the endogenous repertoire with frequencies of 40%. However, these high frequencies were reached too late; large, progressively growing melanomas had already emerged. Addition of the TRP-1-directed mAb TA99 to the treatment protocol mediated eradication of s.c. lesions. The mode of action of the Ab did not depend on complement factor C3 and did not lead to improved Ag presentation and CD8 T cell immunity; rather, it recruited FcgammaR-bearing innate immune cells during early tumor control, thereby creating a window of time for the generation of protective cellular immunity. These data support the concept of combination therapy, in which passive transfer of mAbs is supplemented with cancer peptide vaccines. Moreover, we advocate that tumor Ag-specific T cell immunity directed against self-proteins can be exploited from the endogenous repertoire.
- Cancer Research,
- Mus musculus (House mouse)
Titrating CD47 by mismatch CRISPR-interference reveals incomplete repression can eliminate IgG-opsonized tumors but limits induction of antitumor IgG.
In PNAS Nexus on 1 August 2023 by Hayes, B., Zhu, H., et al.
PubMed
Phagocytic elimination of solid tumors by innate immune cells seems attractive for immunotherapy, particularly because of the possibilities for acquired immunity. However, the approach remains challenging, with blockade of the macrophage checkpoint CD47 working in immunodeficient mice and against highly immunogenic tumors but not in the clinic where tumors are poorly immunogenic. Even when mouse tumors of poorly immunogenic B16F10 melanoma are opsonized to drive engulfment with a suitable monoclonal antibody (mAb), anti-CD47 blockade remains insufficient. Using both in vitro immuno-tumoroids and in vivo mouse models, we show with CRISPR interference (CRISPRi) that a relatively uniform minimum repression of CD47 by 80% is needed for phagocytosis to dominate net growth when combined with an otherwise ineffective mAb (anti-Tyrp1). Heterogeneity enriches for CD47-high cells, but mice that eliminate tumors generate prophagocytic IgGs that increase in titer with CD47 repression and with tumor accumulation of macrophages, although deeper repression does not improve survival. Given well-known limitations of antibody permeation into solid tumors, our studies clarify benchmarks for CD47 disruption that should be more clinically feasible and safer but just as effective as complete ablation. Additionally, safe but ineffective opsonization in human melanoma trials suggests that combinations with deep repression of CD47 could prove effective and initiate durable immunity. © The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.
- Cancer Research,
- Genetics
Host genetic background regulates the capacity for anti-tumor antibody-dependent phagocytosis
Preprint on BioRxiv : the Preprint Server for Biology on 9 May 2023 by Glassbrook, J. E., Hackett, J. B., et al.
PubMed
Background Antitumor antibody, or targeted immunotherapy, has revolutionized cancer treatment and markedly improved patient outcomes. A prime example is the monoclonal antibody (mAb) trastuzumab, which targets human epidermal growth factor receptor 2 (HER2). However, like many targeted immunotherapies, only a subset of patients benefit from trastuzumab long-term. In addition to tumor-intrinsic factors, we hypothesize that host genetics may influence subsequent immune activation. Methods To model the human population, we produced F1 crosses of genetically heterogeneous Diversity Outbred (DO) mice with BALB/c mice (DOCF1). Distinct DOCF1 mice were orthotopically implanted with the BALB/c-syngeneic TUBO mammary tumor line, which expresses the HER2 ortholog rat neu. Treatment with anti-neu mAb clone 7.16.4 began once tumors reached ∼200 mm 3 . Genetic linkage and quantitative trait locus (QTL) effects analyses in R/qtl2 identified loci associated with tumor growth rates. Locus validation was performed with BALB/c F1 crosses with recombinant-inbred Collaborative Cross (CC) strains selected for therapy-associated driver genetics (CCxCF1). The respective roles of natural killer (NK) cells and macrophages were investigated by selective depletion in vivo. Ex vivo macrophage antibody-dependent phagocytosis (ADCP) assays were evaluated by confocal microscopy using 7.16.4-opsonized E2Crimson-expressing TUBO tumor cells. Results We observed a divergent response to anti-tumor antibody therapy in DOCF1 mice. Genetic linkage analysis detected a locus on chromosome 10 that correlates to a robust response to therapy, which was validated in CCxCF1 models. Single-cell RNA sequencing of tumors from responder and non-responder models identified key differences in tumor immune infiltrate composition, particularly within macrophage (Mφ) subsets. This is further supported by ex vivo analysis showing Mφ ADCP capacity correlates to in vivo treatment outcomes in both DOCF1 and CCxCF1 models. Conclusions Host genetics play a key regulatory role in targeted immunotherapy outcomes, and putative causal genes are identified in murine chromosome 10 which may govern Mφ function during ADCP.
- In Vivo,
- Mus musculus (House mouse),
- Cancer Research
Neutrophil-activating therapy for the treatment of cancer.
In Cancer Cell on 13 February 2023 by Linde, I. L., Prestwood, T. R., et al.
PubMed
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. Copyright © 2023 Elsevier Inc. All rights reserved.
- Cancer Research,
- Immunology and Microbiology
Cooperative phagocytosis underlies macrophage immunotherapy of solid tumours and initiates a broad anti-tumour IgG response
Preprint on BioRxiv : the Preprint Server for Biology on 2 January 2022 by Andrechak, J. C., Dooling, L. J., et al.
PubMed
Macrophages are abundant in solid tumours and typically associate with poor prognosis, but macrophage clusters in tumour nests have also been reported as beneficial even though dispersed macrophages would have more contacts with cancer cells. Here, by maximizing both phagocytic activity and macrophage numbers, we discover cooperative phagocytosis by low entropy clusters in rapidly growing engineered immuno-tumouroids. The results fit the calculus of proliferation-versus-engulfment, and rheological measurements and molecular perturbations provide a basis for understanding phagocytic disruption of a tumour’s cohesive forces in soft cellular phases. The perturbations underscore the utility of suppressing a macrophage checkpoint in combination with an otherwise ineffective tumour-opsonizing monoclonal antibody, and the approach translates in vivo to tumour elimination that durably protects mice from re-challenge and metastasis. Adoptive transfer of engineered macrophages increases the fraction of mice that eliminate tumours and potentially overcomes checkpoint blockade challenges in solid tumours like insufficient permeation of blocking antibodies and on-target, off-tumour binding. Finally, anti-cancer IgG induced in vivo are tumour-specific but multi-epitope and contribute to a phagocytic feedback that drives macrophage clustering in vitro . Given that solid tumours remain challenging for immunotherapies, durable anti-tumour responses here illustrate unexpected advantages in maximizing net phagocytic activity.
A resource of high-quality and versatile nanobodies for drug delivery.
In IScience on 24 September 2021 by Shen, Z., Xiang, Y., et al.
PubMed
Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs "Duraleukin" and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs. © 2021 The Authors.
- IHC,
- Mus musculus (House mouse),
- Cancer Research,
- Immunology and Microbiology
A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells.
In The Journal of Clinical Investigation on 16 August 2021 by Veatch, J. R., Singhi, N., et al.
PubMed
Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-β, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.
- Immunology and Microbiology
Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity.
In Proceedings of the National Academy of Sciences of the United States of America on 29 June 2021 by Ibarlucea-Benitez, I., Weitzenfeld, P., et al.
PubMed
Given the role of myeloid cells in T cell activation and in the antitumor response, targeting checkpoint molecules expressed on this population represents a promising strategy to augment antitumor immunity. However, myeloid checkpoints that can be effectively used as immunotherapy targets are still lacking. Here, we demonstrate the therapeutic potential of targeting the myeloid receptors Siglec-7 and Siglec-9 in vivo. By using a humanized immunocompetent murine model, we demonstrate that human Siglec-7 and Siglec-9, in addition to the murine homolog Siglec-E, inhibit the endogenous antitumor immune response, as well as the response to tumor-targeting and immune checkpoint inhibiting antibodies in vivo. The impact of these Siglecs on tumor progression is highly dependent on the anatomical distribution of the tumor and, as a consequence, the local tumor microenvironment, as tumors with a more immune-suppressive tumor microenvironment are less sensitive to Siglec perturbation. Finally, to assess the potential of these two receptors as targets for immunotherapy, we developed Fc engineered blocking antibodies to Siglec-7 and Siglec-9 and demonstrate that Siglec-7 and Siglec-9 blockade can significantly reduce tumor burden in vivo, demonstrating the therapeutic potential of targeting these two receptors.
- Cell Biology
Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα.
In Journal of Cell Science on 6 March 2020 by Hayes, B., Tsai, R. K., et al.
PubMed
The macrophage checkpoint receptor SIRPα signals against phagocytosis by binding CD47 expressed on all cells - including macrophages. Here, we found that inhibiting cis interactions between SIRPα and CD47 on the same macrophage increased engulfment ('eating') by approximately the same level as inhibiting trans interactions. Antibody blockade of CD47, as pursued in clinical trials against cancer, was applied separately to human-derived macrophages and to red blood cell (RBC) targets for phagocytosis, and both scenarios produced surprisingly similar increases in RBC engulfment. Blockade of both macrophages and targets resulted in hyper-phagocytosis, and knockdown of macrophage-CD47 likewise increased engulfment of 'foreign' cells and particles, decreased the baseline inhibitory signaling of SIRPα, and linearly increased binding of soluble CD47 in trans, consistent with cis-trans competition. Many cell types express both SIRPα and CD47, including mouse melanoma B16 cells, and CRISPR-mediated deletions modulate B16 phagocytosis, consistent with cis-trans competition. Additionally, soluble SIRPα binding to human CD47 displayed on Chinese hamster ovary (CHO) cells was suppressed by SIRPα co-display, and atomistic computations confirm SIRPα bends and binds CD47 in cis Safety and efficacy profiles for CD47-SIRPα blockade might therefore reflect a disruption of both cis and trans interactions. © 2020. Published by The Company of Biologists Ltd.
- Cell Biology
Macrophages eat more after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα.
In Journal of Cell Science on 1 January 2020 by Hayes, B. H., Tsai, R. K., et al.
PubMed
The macrophage checkpoint receptor SIRPα signals against phagocytosis by binding CD47 expressed on all cells - including macrophages. Here, inhibiting cis interactions between SIRPα and CD47 on the same macrophage increases eating approximately the same as inhibiting trans interactions. Antibody blockade of CD47, as pursued in clinical trials against cancer, is applied separately to human-derived macrophages and to red blood cell (RBC) targets for phagocytosis, and both scenarios produce surprisingly similar increases in RBC engulfment. Blockade of both macrophages and targets results in hyper-phagocytosis, and knockdown of macrophage-CD47 likewise increases eating of 'foreign' cells and particles, decreases SIRPα's baseline inhibitory signaling, and linearly increases binding of soluble-CD47 in trans, consistent with cis-trans competition. Many cell types express both SIRPα and CD47, including mouse melanoma B16 cells, and CRISPR-mediated deletions modulate B16 phagocytosis consistent with cis-trans competition. Additionally, soluble SIRPα binding to human-CD47 displayed on Chinese hamster ovary (CHO) cells is suppressed by SIRPα co-display, and atomistic computations confirm SIRPα bends and binds CD47 in cis. Safety and efficacy profiles for CD47-SIRPα blockade might therefore reflect a disruption of both cis and trans interactions. © 2020. Published by The Company of Biologists Ltd.
- Cancer Research
Inducing Tumor Suppressive Microenvironments through Genome Edited CD47-/- Syngeneic Cell Vaccination.
In Scientific Reports on 27 December 2019 by Jayaraman Rukmini, S., Bi, H., et al.
PubMed
Tumors can escape from the immune system by overexpressing CD47 and other checkpoint blockades. CD47 is expressed ubiquitously by all cells in the body, posing an obstacle for CD47 blocking treatments due to their systemic toxicity. We performed a study to determine how the tumor microenvironment changes after vaccination with genome edited CD47-/- syngeneic tumor cells. We discovered that inactivated CD47-depleted mouse melanoma cells can protect mice from melanoma. Our animal study indicated that 33% of vaccinated mice remained tumor-free, and 100% of mice had 5-fold reduced growth rates. The characterization of immunomodulatory effects of the vaccine revealed a highly anti-tumorigenic and homogenous microenvironment after vaccination. We observed consistently that in the tumors that failed to respond to vaccines, there were reduced natural killer cells, elevated regulatory T cells, M2-type macrophages, and high PD-L1 expression in these cells. These observations suggested that the tumor microenvironments became more suppressive to tumor growth after vaccination, suggesting a potential new immunotherapy for solid tumors.
- Cancer Research,
- Immunology and Microbiology
Synergistic cancer immunotherapy combines MVA-CD40L induced innate and adaptive immunity with tumor targeting antibodies.
In Nature Communications on 6 November 2019 by Medina-Echeverz, J., Hinterberger, M., et al.
PubMed
Virus-based vaccines and appropriate costimulation potently enhance antigen-specific T cell immunity against cancer. Here we report the use of recombinant modified vaccinia virus Ankara (rMVA) encoding costimulatory CD40L against solid tumors. Therapeutic treatment with rMVA-CD40L-expressing tumor-associated antigens results in the control of established tumors. The expansion of tumor-specific cytotoxic CD8+ T cells is essential for the therapeutic antitumor effects. Strikingly, rMVA-CD40L also induces strong natural killer (NK) cell activation and expansion. Moreover, the combination of rMVA-CD40L and tumor-targeting antibodies results in increased therapeutic antitumor efficacy relying on the presence of Fc receptor and NK cells. We describe a translationally relevant therapeutic synergy between systemic viral vaccination and CD40L costimulation. We show strengthened antitumor immune responses when both rMVA-CD40L-induced innate and adaptive immune mechanisms are exploited by combination with tumor-targeting antibodies. This immunotherapeutic approach could translate into clinical cancer therapies where tumor-targeting antibodies are employed.
A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity.
In The Journal of Clinical Investigation on 1 October 2019 by Rasoulouniriana, D., Santana-Magal, N., et al.
PubMed
While a high frequency of Th1 cells in tumors is associated with improved cancer prognosis, this benefit has been attributed mainly to support of cytotoxic activity of CD8+ T cells. By attempting to potentiate antibody-driven immunity, we found a remarkable synergy between CD4+ T cells and tumor-binding antibodies. This surprising synergy was mediated by a small subset of tumor-infiltrating CD4+ T cells that express the high-affinity Fcγ receptor for IgG (FcγRI) in both mouse and human patients. These cells efficiently lyse tumor cells coated with antibodies through concomitant crosslinking of their T cell receptor (TCR) and FcγRI. By expressing FcγRI and its signaling chain in conventional CD4+ T cells, we successfully employed this mechanism to treat established solid cancers. Overall, this discovery sheds new light on the biology of this T cell subset, their function during tumor immunity, and the means to utilize their unique killing signals in immunotherapy.
- Cancer Research
Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis.
In Cell Reports on 26 June 2018 by Matlung, H. L., Babes, L., et al.
PubMed
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.