InVivoMAb anti-mouse BTLA (CD272)

Catalog #BE0210
Clone:
8F4
Reactivities:
Mouse

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The 8F4 monoclonal antibody reacts with mouse B- and T-lymphocyte attenuator (BTLA) also known as CD272. BTLA is an Ig superfamily member which is expressed on B cells, T cells, macrophages, dendritic cells, NK cells, and NKT cells. Like PD-1 and CTLA-4, BTLA interacts with a B7 homolog, B7-H4. However, unlike PD-1 and CTLA-4, BTLA displays T cell inhibition via interaction with tumor necrosis family receptors, not just the B7 family of cell surface receptors. BTLA is a ligand for herpes virus entry mediator (HVEM). BTLA-HVEM complexes have been shown to negatively regulate T cell immune responses. The 8F4 antibody reacts with BALb/c and C57BL/6 mouse BLTA.

Specifications

Isotype Mouse IgG1, Īŗ
Recommended Isotype Control(s) InVivoMAb mouse IgG1 isotype control, unknown specificity
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen C57BL/6 mouse BTLA Ig domain
Reported Applications Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Ī¼M filtered
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_10948994
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
Flow Cytometry
Shao, L., et al. (2015). "Aberrant germinal center formation, follicular T-helper cells, and germinal center B-cells were involved in chronic graft-versus-host disease" Ann Hematol 94(9): 1493-1504. PubMed

Chronic graft-versus-host disease (cGVHD) is an important complication after allogeneic hematopoietic stem cell transplantation (HSCT). To define the roles of T-cells and B-cells in cGVHD, a murine minor histocompatibility complex-mismatched HSCT model was used. Depletion of donor splenocyte CD4(+) T-cells and B220(+) B-cells alleviated cGVHD. Allogeneic recipients had significantly increased splenic germinal centers (GCs), with significant increases in follicular T-helper (Tfh) cells and GC B-cells. There were increased expressions in Tfh cells of inducible T-cell co-stimulator (ICOS), interleukin (IL)-4 and IL-17, and in GC B-cells of B-cell activating factor receptor and ICOS ligand. Depletion of donor splenocyte CD4(+) T-cells abrogated aberrant GC formation and suppressed Tfh cells and GC B-cells. Interestingly, depletion of donor splenocyte B200(+) B-cells also suppressed Tfh cells in addition to GC B-cells. These results suggested that in cGVHD, both Tfh and GC B-cells were involved, and their developments were mutually dependent. The mammalian target of rapamycin (mTOR) inhibitor everolimus was effective in suppressing cGVHD, Tfh cells, and GC B-cells, either as a prophylaxis or when cGVHD had established. These results implied that therapeutic targeting of both T-cells and B-cells in cGVHD might be effective. Signaling via mTOR may be another useful target in cGVHD.

Flow Cytometry
Vaeth, M., et al. (2014). "Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression" J Exp Med 211(3): 545-561. PubMed

Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4(+)CXCR5(+) follicular helper T cells (TFH) and inhibited by CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells.