InVivoMAb anti-human IL-4

Catalog #BE0240
Product Citations:
5
Clone:
MP4-25D2
Reactivities:
Human

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The MP4-25D2 monoclonal antibody reacts with human IL-4 (interleukin-4) a multifunctional 14 kDa cytokine. IL-4 is expressed primarily by activated Th2 cells and NK cells, and at lower levels by mast cells, and basophils. IL-4 signals through the IL-4RĪ±. Upon receptor binding IL-4 stimulates activated B and T lymphocyte proliferation, and the differentiation of B cells into plasma cells. It also induces B cell class switching to IgE, and up-regulates MHC class II production while decreasing the production of Th1 cells, macrophages, IFNĪ³, and dendritic cell IL-12. Like other Th2 associated cytokines, IL-4 is involved in the airway inflammation observed in the lungs of patients with allergic asthma. The MP4-25D2 monoclonal antibody has been shown to neutralize the bioactivity of natural or recombinant human IL-4.

Specifications

Isotype Rat IgG1,Ā Īŗ
Recommended Isotype Control(s) InVivoMAb rat IgG1 isotype control, anti-horseradish peroxidase
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen Recombinant human IL-4 expressing CHO cells
Reported Applications in vitro IL-4 neutralization
Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_2687722
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
in vitro IL-4 neutralization
Li, L., et al. (2019). "TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy" Cell Metab 29(1): 103-123.e105. PubMed

Regulatory T (Treg) cells induce an immunosuppressive microenvironment that is a major obstacle for successful tumor immunotherapy. Dissecting the regulatory mechanisms between energy metabolism and functionality in Treg cells will provide insight toward developing novel immunotherapies against cancer. Here we report that human naturally occurring and tumor-associated Treg cells exhibit distinct metabolic profiles with selectivity for glucose metabolism compared with effector T cells. Treg-mediated accelerated glucose consumption induces cellular senescence and suppression of responder T cells through cross-talk. TLR8 signaling selectively inhibits glucose uptake and glycolysis in human Treg cells, resulting in reversal of Treg suppression. Importantly, TLR8 signaling-mediated reprogramming of glucose metabolism and function in human Treg cells can enhance anti-tumor immunity in vivo in a melanoma adoptive transfer T cell therapy model. Our studies identify mechanistic links between innate signaling and metabolic regulation of human Treg suppression, which may be used as a strategy to advance tumor immunotherapy.

Flow Cytometry
Schulz, A. R., et al. (2015). "Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans" J Immunol 195(10): 4699-4711. PubMed

Immunological competence declines progressively with age, resulting in increased susceptibility of the elderly to infection and impaired responses to vaccines. Underlying mechanisms remain largely obscure as they have been related to complex, individual systemic immune properties that are challenging to investigate. In this study, we explored age-related changes in human immunity during a primary virus infection experimentally induced by immunization with live-attenuated yellow fever (YF) vaccine. Applying detailed serology, advanced FACS analysis, and systems biology, we discovered that aged subjects developed fewer neutralizing Abs, mounted diminished YF-specific CD8(+) T cell responses, and showed quantitatively and qualitatively altered YF-specific CD4(+) T cell immunity. Among numerous immune signatures, low in vivo numbers of naive CD4(+) recent thymic emigrants and peripheral dendritic cells correlated well with reduced acute responsiveness and altered long-term persistence of human cellular immunity to YF vaccination. Hence, we reveal in this article that essential elements of immune responses such as recent thymic emigrants and dendritic cells strongly relate to productive immunity in the elderly, providing a conceivable explanation for diminished responsiveness to vaccination with neoantigens and infection with de novo pathogens in the aged population.

in vitro IL-4 neutralization
Nakatsukasa, H., et al. (2015). "The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells" Nat Immunol 16(10): 1077-1084. PubMed

The molecular mechanisms by which signaling via transforming growth factor-beta (TGF-beta) and interleukin 4 (IL-4) control the differentiation of CD4(+) IL-9-producing helper T cells (TH9 cells) remain incompletely understood. We found here that the DNA-binding inhibitor Id3 regulated TH9 differentiation, as deletion of Id3 increased IL-9 production from CD4(+) T cells. Mechanistically, TGF-beta1 and IL-4 downregulated Id3 expression, and this process required the kinase TAK1. A reduction in Id3 expression enhanced binding of the transcription factors E2A and GATA-3 to the Il9 promoter region, which promoted Il9 transcription. Notably, Id3-mediated control of TH9 differentiation regulated anti-tumor immunity in an experimental melanoma-bearing model in vivo and also in human CD4(+) T cells in vitro. Thus, our study reveals a previously unrecognized TAK1-Id3-E2A-GATA-3 pathway that regulates TH9 differentiation.

Flow Cytometry
Hong, M., et al. (2015). "Trained immunity in newborn infants of HBV-infected mothers" Nat Commun 6: 6588. PubMed

The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newbornsā€™ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-alpha2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero.

Flow Cytometry
Gringhuis, S. I., et al. (2014). "Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKepsilon- and CYLD-dependent Bcl3 activation" Nat Commun 5: 3898. PubMed

Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-kappaB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKepsilon and CYLD are recruited to phosphorylated LSP1. IKKepsilon activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKepsilon-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy.

Flow Cytometry
Wevers, B. A., et al. (2014). "Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity" Cell Host Microbe 15(4): 494-505. PubMed

Recognition of fungal pathogens by C-type lectin receptor (CLR) dectin-1 on human dendritic cells is essential for triggering protective antifungal TH1 and TH17 immune responses. We show that Fonsecaea monophora, a causative agent of chromoblastomycosis, a chronic fungal skin infection, evades these antifungal responses by engaging CLR mincle and suppressing IL-12, which drives TH1 differentiation. Dectin-1 triggering by F. monophora activates transcription factor IRF1, which is crucial for IL12A transcription via nucleosome remodeling. However, simultaneous F. monophora binding to mincle induces an E3 ubiquitin ligase Mdm2-dependent degradation pathway, via Syk-CARD9-mediated PKB signaling, that leads to loss of nuclear IRF1 activity, hence blocking IL12A transcription. The absence of IL-12 leads to impaired TH1 responses and promotes TH2 polarization. Notably, mincle is similarly exploited by other chromoblastomycosis-associated fungi to redirect TH responses. Thus, mincle is a fungal receptor that can suppress antifungal immunity and, as such, is a potential therapeutic target.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance.

    In Cancer Cell on 12 September 2022 by Zheng, N., Fang, J., et al.

    PubMed

    Cytotoxicity of tumor-specific TĀ cells requires tumor cell-to-T cell contact-dependent induction of classic tumor cell apoptosis and pyroptosis. However, this may not trigger sufficient primary responses of solid tumors to adoptive cell therapy or prevent tumor antigen escape-mediated acquired resistance. Here we test myxoma virus (MYXV)-infected tumor-specific T (TMYXV) cells expressing chimeric antigen receptor (CAR) or TĀ cell receptor (TCR), which systemically deliver MYXV into solid tumors to overcome primary resistance. In addition to TĀ cell-induced apoptosis and pyroptosis, tumor eradication by CAR/TCR-TMYXV cells is also attributed to tumor cell autosis induction, a special type of cell death. Mechanistically, TĀ cell-derived interferon Ī³ (IFNĪ³)-protein kinase B (AKT) signaling synergizes with MYXV-induced M-T5-SKP-1-VPS34 signaling to trigger robust tumor cell autosis. CAR/TCR-TMYXV-elicited autosis functions as a type of potent bystander killing to restrain antigen escape. We uncover an unexpected synergy between TĀ cells and MYXV to bolster solid tumor cell autosis that reinforces tumor clearance. Copyright Ā© 2022 Elsevier Inc. All rights reserved.

    • FC/FACS
    • ,
    • Homo sapiens (Human)
    • ,
    • Immunology and Microbiology
    • ,
    • Neuroscience
    Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes.

    In Frontiers in Immunology on 29 April 2022 by Jamann, H., Cui, Q. L., et al.

    PubMed

    Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-Ī³, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-Ī³, TNFĪ±, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B-mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B. Copyright Ā© 2022 Jamann, Cui, Desu, Pernin, Tastet, Halaweh, Farzam-kia, Mamane, OuĆ©draogo, Cleret-Buhot, Daigneault, Balthazard, Klement, LemaĆ®tre, Arbour, Antel, Stratton and Larochelle.

    YY1 regulation by miR-124-3p promotes Th17 cell pathogenicity through interaction with T-bet in rheumatoid arthritis.

    In JCI Insight on 22 November 2021 by Lin, J., Tang, J., et al.

    PubMed

    Th17 cells are involved in rheumatoid arthritis (RA) pathogenesis. Our previous studies have revealed that transcription factor Yin Yang 1 (YY1) plays an important role in the pathogenic mechanisms of RA. However, whether YY1 has any role in Th17 cell pathogenicity and what molecular regulatory mechanism is involved remain poorly understood. Here, we found the proportion of pathogenic Th17 (pTh17) cells was significantly higher in RA than in control individuals and showed a potential relationship with YY1 expression. In addition, we also observed YY1 expression was increased in pTh17, and the pTh17 differentiation was hampered by YY1 knockdown. Consistently, knockdown of YY1 decreased the proportion of pTh17 cells and attenuated joint inflammation in collagen-induced arthritis mice. Mechanistically, YY1 could regulate the pathogenicity of Th17 cells through binding to the promoter region of transcription factor T-bet and interacting with T-bet protein. This function of YY1 for promoting pTh17 differentiation was specific to Th17 cells and not to Th1 cells. Moreover, we found miR-124-3p negatively correlated with YY1 in RA patients, and it could bind to 3'-UTR regions of YY1 to inhibit the posttranscriptional translation of YY1. Altogether, these findings indicate YY1 regulation by miR-124-3p could specifically promote Th17 cell pathogenicity in part through interaction with T-bet, and these findings present promising therapeutic targets in RA.

    • In Vitro
    • ,
    • Homo sapiens (Human)
    • ,
    • Immunology and Microbiology
    T Cell-Intrinsic IRF5 Regulates T Cell Signaling, Migration, and Differentiation and Promotes Intestinal Inflammation.

    In Cell Reports on 30 June 2020 by Yan, J., Pandey, S. P., et al.

    PubMed

    IRF5 polymorphisms are associated with multiple immune-mediated diseases, including ulcerative colitis. IRF5 contributions are attributed to its role in myeloid lineages. How TĀ cell-intrinsic IRF5 contributes to inflammatory outcomes is not well understood. We identify a previously undefined key role for TĀ cell-intrinsic IRF5. In mice, IRF5 in CD4+ TĀ cells promotes Th1- and Th17-associated cytokines and decreases Th2-associated cytokines. IRF5 is required for the optimal assembly of the TCR-initiated signaling complex and downstream signaling at early times, and at later times binds to promoters of Th1- and Th17-associated transcription factors and cytokines. IRF5 also regulates chemokine receptor-initiated signaling and, in turn, TĀ cell migration. InĀ vivo, IRF5 in CD4+ TĀ cells enhances the severity of experimental colitis. Importantly, human CD4+ TĀ cells from high IRF5-expressing disease-risk genetic carriers demonstrate increased chemokine-induced migration and Th1/Th17 cytokines and reduced Th2-associated and anti-inflammatory cytokines. These data demonstrate key roles for TĀ cell-intrinsic IRF5 in inflammatory outcomes.Copyright Ā© 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Neutralization
    • ,
    • In Vitro
    • ,
    • Homo sapiens (Human)
    • ,
    • Biochemistry and Molecular biology
    • ,
    • Cancer Research
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy.

    In Cell Metabolism on 8 January 2019 by Li, L., Liu, X., et al.

    PubMed

    Regulatory T (Treg) cells induce an immunosuppressive microenvironment that is a major obstacle for successful tumor immunotherapy. Dissecting the regulatory mechanisms between energy metabolism and functionality in Treg cells will provide insight toward developing novel immunotherapies against cancer. Here we report that human naturally occurring and tumor-associated Treg cells exhibit distinct metabolic profiles with selectivity for glucose metabolism compared with effector TĀ cells. Treg-mediated accelerated glucose consumption induces cellular senescence and suppression of responder TĀ cells through cross-talk. TLR8 signaling selectively inhibits glucose uptake and glycolysis in human Treg cells, resulting in reversal of Treg suppression. Importantly, TLR8 signaling-mediated reprogramming of glucose metabolism and function in human Treg cells can enhance anti-tumor immunity inĀ vivo in a melanoma adoptive transfer TĀ cell therapy model. Our studies identify mechanistic links between innate signaling and metabolic regulation of human Treg suppression, which may be used as a strategy to advance tumor immunotherapy.Copyright Ā© 2018 Elsevier Inc. All rights reserved.