InVivoMAb anti-mouse MHC Class I (H-2Kk, H-2Dk)

Catalog #BE0228
Clone:
16-1-2N (HB14)
Reactivities:
Mouse

$164.00 - $4,280.00

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The 16-1-2N monoclonal antibody is reported to react with the mouse H-2Kk and H-2Dk MHC class I alloantigens. MHC class I antigens are heterodimers consisting of one alpha chain (44 kDa) associated with Ī²2 microglobulin (11.5 kDa). The antigen is expressed by all nucleated cells at varying levels. MHC Class I molecules present endogenously synthesized antigenic peptides to CD8 T cells.

Specifications

Isotype Mouse IgG2a
Recommended Isotype Control(s) InVivoMAb mouse IgG2a isotype control, unknown specificity
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen C3H mouse spleen cells
Reported Applications Functional assays
Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_2687711
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
Flow Cytometry
Kusunoki, Y., et al. (1998). "Prevention of marrow graft rejection without induction of graft-versus-host disease by a cytotoxic T-cell clone that recognizes recipient alloantigens" Blood 91(11): 4038-4044. PubMed

In allogeneic marrow transplantation, donor T cells that recognize recipient alloantigens prevent rejection but also cause graft-versus-host disease (GVHD). To evaluate whether the ability to prevent marrow graft rejection could be dissociated from the ability to cause GVHD, we generated a panel of four different CD8 cytotoxic T-lymphocyte clones specific for H2(d) alloantigens. Three of the clones caused no overt toxicity when as many as 20 x 10(6) cells were infused intravenously into irradiated H2(d)-positive recipients, and one clone caused acute lethal toxicity within 1 to 3 days after transferring 10 x 10(6) cells into H2(d)-positive recipients. One clone that did not cause toxicity was able to prevent rejection of (C57BL/6J x C3H/HeJ)F1 marrow in 800 cGy-irradiated (BALB/cJ x C57BL/6J)F1 recipients without causing GVHD. Large numbers of cells and exogenously administered interleukin-2 were required to prevent rejection. These results with different CD8 clones suggest that GVHD and prevention of rejection could be separable effects mediated by distinct populations of donor T cells that recognize recipient alloantigens.

Functional Assays
Jiang, H., et al. (1998). "T cell vaccination induces T cell receptor Vbeta-specific Qa-1-restricted regulatory CD8(+) T cells" Proc Natl Acad Sci U S A 95(8): 4533-4537. PubMed

Vaccination of mice with activated autoantigen-reactive CD4(+) T cells (T cell vaccination, TCV) has been shown to induce protection from the subsequent induction of a variety of experimental autoimmune diseases, including experimental allergic encephalomyelitis (EAE). Although the mechanisms involved in TCV-mediated protection are not completely known, there is some evidence that TCV induces CD8(+) regulatory T cells that are specific for pathogenic CD4(+) T cells. Previously, we demonstrated that, after superantigen administration in vivo, CD8(+) T cells emerge that preferentially lyse and regulate activated autologous CD4(+) T cells in a T cell receptor (TCR) Vbeta-specific manner. This TCR Vbeta-specific regulation is not observed in beta2-microglobulin-deficient mice and is inhibited, in vitro, by antibody to Qa-1. We now show that similar Vbeta8-specific Qa-1-restricted CD8(+) T cells are also induced by TCV with activated CD4(+) Vbeta8(+) T cells. These CD8(+) T cells specifically lyse murine or human transfectants coexpressing Qa-1 and murine TCR Vbeta8. Further, CD8(+) T cell hybridoma clones generated from B10.PL mice vaccinated with a myelin basic protein-specific CD4(+)Vbeta8(+) T cell clone specifically recognize other CD4(+) T cells and T cell tumors that express Vbeta8 and the syngeneic Qa-1(a) but not the allogeneic Qa-1(b) molecule. Thus, Vbeta-specific Qa-1-restricted CD8(+) T cells are induced by activated CD4(+) T cells. We suggest that these CD8(+) T cells may function to specifically regulate activated CD4(+) T cells during immune responses.

Functional Assays
Oā€™Neill, H. C.. (1986). "Monoclonal antibodies specific for H-2K and H-2D antigens on cytotoxic T cells can inhibit their function" Proc Natl Acad Sci U S A 83(5): 1443-1447. PubMed

Antibodies specific for murine major histocompatibility gene complex (MHC) class I H-2K and H-2D molecules present on cytotoxic T (Tc) cells have been shown to inhibit their function of target cell lysis. This could only be demonstrated by using a more sensitive assay for T-cell-mediated lysis, and many monoclonal antibodies of different Ig class, origin, and specificity can be shown to inhibit alloreactive as well as MHC-restricted Tc cells. These antibodies inhibit different activated T-cell populations to varying extents, and anti-H-2K but not anti-H-2D antibodies show a synergistic effect with anti-Lyt-2 antibodies. Data here suggest that MHC molecules may be located in or near the T-cell receptor complex on these cells.