InVivoMAb anti-mouse NKG2D

Catalog #BE0111
Product Citations:
10
Clone:
HMG2D
Reactivities:
Mouse

$164.00 - $4,280.00

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The HMG2D monoclonal antibody reacts with mouse NKG2D, a type II transmembrane lectin-like glycoprotein also known as CD314. NKG2D is expressed on NK cells, NKT cells, CD8 T cells, Ī³/Ī“ T cells, and macrophages. NKG2D has been implicated in anti-tumor surveillance and the immune response against viral infection. The HMG2D antibody has been shown to block NKG2D in vivo.

Specifications

Isotype Armenian hamster IgG
Recommended Isotype Control(s) InVivoMAb polyclonal Armenian hamster IgG
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen Mouse NKG2D-Fc fusion protein
Reported Applications in vivo NKG2D blockade
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_10950118
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
in vivo NKG2D blockade
Crosby, E. J., et al. (2015). "Lymphocytic Choriomeningitis Virus Expands a Population of NKG2D+CD8+ T Cells That Exacerbates Disease in Mice Coinfected with Leishmania major" J Immunol 195(7): 3301-3310. PubMed

Leishmaniasis is a significant neglected tropical disease that is associated with a wide range of clinical presentations and a lifelong persistent infection. Because of the chronic nature of the disease, there is a high risk for coinfection occurring in patients, and how coinfections influence the outcome of leishmaniasis is poorly understood. To address this issue, we infected mice with Leishmania major and 2 wk later with lymphocytic choriomeningitis virus (LCMV) and then monitored the course of infection. Leishmania parasites are controlled by production of IFN-gamma, which leads to macrophage-mediated parasite killing. Thus, one might predict that coinfection with LCMV, which induces a strong systemic type 1 response, would accelerate disease resolution. However, we found that infection with LCMV led to significantly enhanced disease in L. major-infected animals. This increased disease correlated with an infiltration into the leishmanial lesions of NKG2D(+) CD8(+) T cells producing granzyme B, but surprisingly little IFN-gamma. We found that depletion of CD8 T cells after viral clearance, as well as blockade of NKG2D, reversed the increased pathology seen in coinfected mice. Thus, this work highlights the impact a secondary infection can have on leishmaniasis and demonstrates that even pathogens known to promote a type 1 response may exacerbate leishmanial infections.

in vivo NKG2D blockade
Crosby, E. J., et al. (2014). "Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection" PLoS Pathog 10(2): e1003970. PubMed

One of the hallmarks of adaptive immunity is the development of a long-term pathogen specific memory response. While persistent memory T cells certainly impact the immune response during a secondary challenge, their role in unrelated infections is less clear. To address this issue, we utilized lymphocytic choriomeningitis virus (LCMV) and Listeria monocytogenes immune mice to investigate whether bystander memory T cells influence Leishmania major infection. Despite similar parasite burdens, LCMV and Listeria immune mice exhibited a significant increase in leishmanial lesion size compared to mice infected with L. major alone. This increased lesion size was due to a severe inflammatory response, consisting not only of monocytes and neutrophils, but also significantly more CD8 T cells. Many of the CD8 T cells were LCMV specific and expressed gzmB and NKG2D, but unexpectedly expressed very little IFN-gamma. Moreover, if CD8 T cells were depleted in LCMV immune mice prior to challenge with L. major, the increase in lesion size was lost. Strikingly, treating with NKG2D blocking antibodies abrogated the increased immunopathology observed in LCMV immune mice, showing that NKG2D engagement on LCMV specific memory CD8 T cells was required for the observed phenotype. These results indicate that bystander memory CD8 T cells can participate in an unrelated immune response and induce immunopathology through an NKG2D dependent mechanism without providing increased protection.

in vivo NKG2D blockade
Hervieu, A., et al. (2013). "Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth" J Invest Dermatol 133(2): 499-508. PubMed

Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNgamma secretion in mice and humans. NK cell-derived IFNgamma subsequently favored upregulation of major histocompatibility complex class I molecules on tumor cells, rendering them sensitive to cytotoxic CD8(+) T cells. Accordingly, DTIC markedly enhanced cytotoxic T lymphocyte antigen 4 inhibition efficacy in vivo in an NK-dependent manner. These results underscore the immunogenic properties of DTIC and provide a rationale to combine DTIC with immunotherapeutic agents that relieve immunosuppression in vivo.

in vivo NKG2D blockade
Chen, H., et al. (2013). "NKG2D blockade attenuated cardiac allograft vasculopathy in a mouse model of cardiac transplantation" Clin Exp Immunol 173(3): 544-552. PubMed

90 days, P < 0.001) significantly and attenuated CAV. These in-vivo results correlated with reduced alloantibody production, low expression of interleukin (IL)-17 and IL-6, while infiltration of regulatory T cells increased. IL-6 administration induced shorter allograft survival and higher CAV grade in CTLA-4-Ig plus anti-NKG2D mAb-treated recipients, whereas IL-17 had no significant effect on allograft survival and CAV grade in CTLA-4-Ig plus anti-NKG2D mAb-treated recipients. Furthermore, the prolonged allograft survival induced by NKG2D blockade was abrogated partially with depletion of regulatory T cells. In conclusion, blockade of NKG2D combined with CTLA-4-Ig attenuated CAV and this effect was associated with lower alloantibody production, inhibited IL-6 expression and enhanced expansion of regulatory T cells.ā€}ā€ data-sheets-userformat=ā€{ā€œ2ā€³:14851,ā€3ā€:{ā€œ1ā€³:0},ā€4ā€:{ā€œ1ā€³:2,ā€2ā€³:16777215},ā€12ā€³:0,ā€14ā€:{ā€œ1ā€³:2,ā€2ā€³:1521491},ā€15ā€³:ā€Roboto, sans-serifā€,ā€16ā€³:12}ā€>A previous paper has reported that blockade of NKG2D was effective in protecting allograft in murine models of cardiac transplantation, but the mechanism of NKG2D blockade on attenuated cardiac allograft vasculopathy (CAV) was still unknown. In our current study, we found that wild-type recipients treated with anti-NKG2D monoclonal antibody (mAb) plus cytotoxic T lymphocyte antigen (CTLA)-4-immunoglobulin (I)g showed prolonged allograft survivals (>90 days, P < 0.001) significantly and attenuated CAV. These in-vivo results correlated with reduced alloantibody production, low expression of interleukin (IL)-17 and IL-6, while infiltration of regulatory T cells increased. IL-6 administration induced shorter allograft survival and higher CAV grade in CTLA-4-Ig plus anti-NKG2D mAb-treated recipients, whereas IL-17 had no significant effect on allograft survival and CAV grade in CTLA-4-Ig plus anti-NKG2D mAb-treated recipients. Furthermore, the prolonged allograft survival induced by NKG2D blockade was abrogated partially with depletion of regulatory T cells. In conclusion, blockade of NKG2D combined with CTLA-4-Ig attenuated CAV and this effect was associated with lower alloantibody production, inhibited IL-6 expression and enhanced expansion of regulatory T cells.

in vivo NKG2D blockade
Graubardt, N., et al. (2013). "Promotion of liver regeneration by natural killer cells in a murine model is dependent on extracellular adenosine triphosphate phosphohydrolysis" Hepatology 57(5): 1969-1979. PubMed

Nucleotides, such as adenosine triphosphate (ATP), are released by cellular injury, bind to purinergic receptors expressed on hepatic parenchymal and nonparenchymal cells, and modulate cellular crosstalk. Liver resection and resulting cellular stress initiate such purinergic signaling responses between hepatocytes and innate immune cells, which regulate and ultimately drive liver regeneration. We studied a murine model of partial hepatectomy using immunodeficient mice to determine the effects of natural killer (NK) cell-mediated purinergic signaling on liver regeneration. We noted first that liver NK cells undergo phenotypic changes post-partial hepatectomy (PH) in vivo, including increased cytotoxicity and more immature phenotype manifested by alterations in the expression of CD107a, CD27, CD11b, and CD16. Hepatocellular proliferation is significantly decreased in Rag2/common gamma-null mice (lacking T, B, and NK cells) when compared to wildtype and Rag1-null mice (lacking T and B cells but retaining NK cells). Extracellular ATP levels are elevated post-PH and NK cell cytotoxicity is substantively increased in vivo in response to hydrolysis of extracellular ATP levels by apyrase (soluble NTPDase). Moreover, liver regeneration is significantly increased by the scavenging of extracellular ATP in wildtype mice and in Rag2/common gamma-null mice after adoptive transfer of NK cells. Blockade of NKG2D-dependent interactions significantly decreased hepatocellular proliferation. In vitro, NK cell cytotoxicity is inhibited by extracellular ATP in a manner dependent on P2Y1, P2Y2, and P2X3 receptor activation. CONCLUSION: We propose that hepatic NK cells are activated and cytotoxic post-PH and support hepatocellular proliferation. NK cell cytotoxicity is, however, attenuated by hepatic release of extracellular ATP by way of the activation of specific P2 receptors. Clearance of extracellular ATP elevates NK cell cytotoxicity and boosts liver regeneration.

in vivo NKG2D blockade
Mandaric, S., et al. (2012). "IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence" PLoS Pathog 8(8): e1002846. PubMed

IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-gamma and TNF-alpha as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10(-/-) mice led to faster control of lytic viral replication, but this came at the expense of TNF-alpha mediated immunopathology. Taken together, our data show that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-adaptive immune cell crosstalk, thereby impacting beneficially on the ensuing virus-host balance for both the virus and the host.

in vivo NKG2D blockade
Zloza, A., et al. (2012). "NKG2D signaling on CD8(+) T cells represses T-bet and rescues CD4-unhelped CD8(+) T cell memory recall but not effector responses" Nat Med 18(3): 422-428. PubMed

CD4-unhelped CD8(+) T cells are functionally defective T cells primed in the absence of CD4(+) T cell help. Given the co-stimulatory role of natural-killer group 2, member D protein (NKG2D) on CD8(+) T cells, we investigated its ability to rescue these immunologically impotent cells. We demonstrate that augmented co-stimulation through NKG2D during priming paradoxically rescues memory, but not effector, CD8(+) T cell responses. NKG2D-mediated rescue is characterized by reversal of elevated transcription factor T-box expressed in T cells (T-bet) expression and recovery of interleukin-2 and interferon-gamma production and cytolytic responses. Rescue is abrogated in CD8(+) T cells lacking NKG2D. Augmented co-stimulation through NKG2D confers a high rate of survival to mice lacking CD4(+) T cells in a CD4-dependent influenza model and rescues HIV-specific CD8(+) T cell responses from CD4-deficient HIV-positive donors. These findings demonstrate that augmented co-stimulation through NKG2D is effective in rescuing CD4-unhelped CD8(+) T cells from their pathophysiological fate and may provide therapeutic benefits.

in vivo NKG2D blockade
Ito, A., et al. (2008). "NK cells contribute to the skin graft rejection promoted by CD4+ T cells activated through the indirect allorecognition pathway" Int Immunol 20(10): 1343-1349. PubMed

Rejection of solid organ allografts is promoted by T cells. Recipient T cells can directly recognize intact allo-MHC molecules on donor cells and can also indirectly recognize processed donor-derived allo-peptides presented by recipient antigen-presenting cells in the context of self-MHC molecules. Although CD4(+) T cells primed through the indirect allorecognition pathway alone are sufficient to promote acute allograft rejection, it is unknown how they can mediate graft destruction without cognate recognition of donor cells. In this study, we analyzed the indirect effector mechanism of skin allograft rejection using a mouse model in which SCID recipients bearing MHC class II-deficient skin allografts were adoptively transferred with CD4(+) T cells. Histologically, entire graft necrosis was preceded by mononuclear cell infiltration in the graft epithelia with epithelial cell apoptosis, indicating cell-mediated cytotoxicity against donor cells as an effector mechanism. Beside CD4(+) T cells and macrophages, NK cells infiltrated in the rejecting grafts. Depletion of NK cells as well as blocking of the activating NK receptor NKG2D allowed prolonged survival of the grafts. Expression of NKG2D ligands was up-regulated in the rejecting grafts. These results suggest that NK cells activated through NKG2D contribute to the skin allograft rejection promoted by indirectly primed CD4(+) T cells.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    A Novel MHC-Independent Mechanism of Tumor Cell Killing by CD8+T Cells

    Preprint on BioRxiv : the Preprint Server for Biology on 3 February 2023 by Lerner, E., Woroniecka, K., et al.

    PubMed

    The accepted paradigm for both cellular and antitumor immunity relies upon tumor cell kill by CD8 + T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex class I (MHC I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8 + T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent on interactions between T cell NKG2D and tumor NKG2D ligands (NKG2DL). Necessarily, tumor cell kill in these instances is antigen-independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumors cells. These mechanisms are active in vivo in mice, as well as in vitro in human tumor systems, and are obviated by NKG2D knockout or blockade. Tumor cell killing following T cell NKG2D engagement is Fas-independent and appears to involve granzyme. These studies potentially obviate the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape, and instead identify the NKG2D/NKG2DL axis as a novel therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC loss variants.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    NKG2D defines tumor-reacting effector CD8+ T cells within tumor microenvironment.

    In Cancer Science on 1 September 2021 by Mojic, M., Shitaoka, K., et al.

    PubMed

    For successful immunotherapy for cancer, it is important to understand the immunological status of tumor antigen-specific CD8+ T cells in the tumor microenvironment during tumor progression. In this study, we monitored the behavior of B16OVA-Luc cells in mice immunized with a model tumor antigen ovalbumin (OVA). Using bioluminescence imaging, we identified the time series of OVA-specific CD8+ T-cell responses during tumor progression: initial progression, immune control, and the escape phase. As a result of analyzing the status of tumor antigen-specific CD8+ cells in those 3 different phases, we found that the expression of NKG2D defines tumor-reacting effector CD8+ T cells. NKG2D may control the fate and TOX expression of tumor-reacting CD8+ T cells, considering that NKG2D blockade in OVA-vaccinated mice delayed the growth of the B16OVA-Luc2 tumor and increased the presence of tumor-infiltrating OVA-specific CD8+ T cells. Ā© 2021 The Authors. Cancer Science published by John Wiley Sons Australia, Ltd on behalf of Japanese Cancer Association.

    • Cardiovascular biology
    • ,
    • Immunology and Microbiology
    Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 pulmonary influx

    Preprint on Research Square on 23 June 2021 by Shin, S. J., Kang, T. G., et al.

    PubMed

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is often exacerbated upon coinfection, but the underlying immunological mechanisms remain unclear. Here, to elucidate these mechanisms, we used a Mtb and lymphocytic choriomeningitis virus coinfection model. Viral coinfection significantly suppressed Mtb-specific IFN-Ī³ production, with elevated bacterial loads and hyperinflammation in the lungs. Type I IFN signaling blockade rescued the Mtb-specific IFN-Ī³ response and ameliorated lung immunopathology. Single-cell sequencing, tissue immunofluorescence staining, and adoptive transfer experiments revealed that type I IFN signaling produced in response to viral infection inhibited CXCL9/10 production in myeloid cells, resulting in impaired pulmonary migration of Mtb-specific CD4 + T cells from lymph nodes. Thus, virus coinfection-induced type I IFN signaling prior to the pulmonary localization of Mtb-specific Th1 cells exacerbates TB immunopathogenesis by impeding the Mtb-specific Th1 cell influx. Our study highlights another novel negative role of viral coinfection and/or type I IFNs in delaying Mtb-specific Th1 responses in the lung.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Endocrinology and Physiology
    Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer.

    In Nature Communications on 30 July 2020 by BuquƩ, A., Bloy, N., et al.

    PubMed

    Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    NK cells prevent T cell lymphoma development in T cell receptor-transgenic mice.

    In Cellular Immunology on 1 June 2020 by Dubois, S., Feigenbaum, L., et al.

    PubMed

    Mice that express a single transgenic T cell receptor have a low incidence of T cell lymphoma development. We investigated whether this tumor development is restricted by surveillance mechanisms that are exerted by IL-15-dependent cells. Lymphoma incidence was increased to between 30 and 60% when TCR transgenes were expressed in IL-15-deficient mice. Mice in which NK cells had been depleted genetically or with neutralizing antibodies allowed lymphoma growth while the absence of CD8 T cells was without consequence. Half of the emerged T cell lymphomas carried Notch1 mutations. The distinct phenotype of the lymphomas involved expression of PD1, CD30, CD24, the stress receptor ligand Mult1 and MHC class I down-regulation. NK cells were able to directly lyse lymphoma cells, and neutralizations of Mult1 and class I expression prevented NK cell degranulation. Together these data support an involvement of NK cells in tumor surveillance of nascent T cell lymphomas. Crown Copyright Ā© 2020. Published by Elsevier Inc. All rights reserved.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Neuroscience
    Enriching the Housing Environment for Mice Enhances Their NK Cell Antitumor Immunity via Sympathetic Nerve-Dependent Regulation of NKG2D and CCR5.

    In Cancer Research on 1 April 2017 by Song, Y., Gan, Y., et al.

    PubMed

    Mice housed in an enriched environment display a tumor-resistant phenotype due to eustress stimulation. However, the mechanisms underlying enriched environment-induced protection against cancers remain largely unexplained. In this study, we observed a significant antitumor effect induced by enriched environment in murine pancreatic cancer and lung cancer models. This effect remained intact in T/B lymphocyte-deficient Rag1-/- mice, but was nearly eliminated in natural killer (NK) cell-deficient Beige mice or in antibody-mediated NK-cell-depleted mice, suggesting a predominant role of NK cells in enriched environment-induced tumor inhibition. Exposure to enriched environment enhanced NK-cell activity against tumors and promoted tumoral infiltration of NK cells. Enriched environment increased the expression levels of CCR5 and NKG2D (KLRK1) in NK cells; blocking their function effectively blunted the enriched environment-induced enhancement of tumoral infiltration and cytotoxic activity of NK cells. Moreover, blockade of Ī²-adrenergic signaling or chemical sympathectomy abolished the effects of enriched environment on NK cells and attenuated the antitumor effect of enriched environment. Taken together, our results provide new insight into the mechanism by which eustress exerts a beneficial effect against cancer. Cancer Res; 77(7); 1611-22. Ā©2017 AACR. Ā©2017 American Association for Cancer Research.

    • Cancer Research
    The anti-tumor role of NK cells in vivo pre-activated and re-stimulated by interleukins in acute lymphoblastic leukemia.

    In Oncotarget on 29 November 2016 by Jin, F., Lin, H., et al.

    PubMed

    Although natural killer cells (NK cells) were traditionally classified as members of the innate immune system, NK cells have recently been found also to be an important player in the adaptive immune systems. In this context, in vitro activation of NK cells by cytokines leads to generation of NK cells with memory-like properties characterized by increased interferon-Ī³ (IFNĪ³) production. However, it remains to be defined whether these memory-like NK cells exist in vivo after cytokine activation. Furthermore, it is also unclear whether such memory-like NK cells induced in vivo by cytokines could have effective anti-leukemia response. To address these issues, we used an in vivo pre-activation and re-stimulation system that was able to produce NK cells with increased IFNĪ³ secretion. It was found that after in vivo pre-activation and re-stimulation with interleukins (ILs), NK cells retained a state to produce increased amount of IFNĪ³. Of note, whereas this intrinsic capacity of enhanced IFNĪ³ production after in vivo IL pre-activation and re-stimulation could be transferred to the next generation of NK cells and was associated with prolonged survival of the mice with acute lymphoid leukemia. Moreover, the anti-leukemia activity of these memory-like NK cells was associated with IFNĪ³ production and up-regulation of NK cells activation receptor-NK Group 2 member D (NKG2D). Together, these findings argue strongly that in vivo IL pre-activation and re-stimulation is capable to induce memory-like NK cells as observed previously in vitro, which are effective against acute lymphoblastic leukemia, likely via NKG2D-dependent IFNĪ³ production, in intact animals.

    • Cardiovascular biology
    • ,
    • Immunology and Microbiology
    NKG2D expression by CD8+ T cells contributes to GVHD and GVT effects in a murine model of allogeneic HSCT.

    In Blood on 4 June 2015 by Karimi, M. A., Bryson, J. L., et al.

    PubMed

    In allogeneic hematopoietic stem cell transplantation (HSCT), controlling graft-versus-host disease (GVHD) while maintaining graft-versus-tumor (GVT) responses is of critical importance. Using a mouse model of allogeneic HSCT, we hereby demonstrate that NKG2D expression by CD8(+) T cells plays a major role in mediating GVHD and GVT effects by promoting the survival and cytotoxic function of CD8(+) T cells. The expression of NKG2D ligands was not induced persistently on normal tissues of allogeneic HSCT-recipient mice treated with anti-NKG2D antibody, suggesting that transient NKG2D blockade might be sufficient to attenuate GVHD and allow CD8(+) T cells to regain their GVT function. Indeed, short-term treatment with anti-NKG2D antibody restored GVT effects while maintaining an attenuated GVHD state. NKG2D expression was also detected on CD8(+) T cells from allogeneic HSCT patients and trended to be higher in those with active GVHD. Together, these data support a novel role for NKG2D expression by CD8(+) T cells during allogeneic HSCT, which could be potentially therapeutically exploited to separate GVHD from GVT effects. Ā© 2015 by The American Society of Hematology.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility.

    In eLife on 5 May 2014 by Cipolat, S., Hoste, E., et al.

    PubMed

    Atopic dermatitis can result from loss of structural proteins in the outermost epidermal layers, leading to a defective epidermal barrier. To test whether this influences tumour formation, we chemically induced tumours in EPI-/- mice, which lack three barrier proteins-Envoplakin, Periplakin, and Involucrin. EPI-/- mice were highly resistant to developing benign tumours when treated with 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The DMBA response was normal, but EPI-/- skin exhibited an exaggerated atopic response to TPA, characterised by abnormal epidermal differentiation, a complex immune infiltrate and elevated serum thymic stromal lymphopoietin (TSLP). The exacerbated TPA response could be normalised by blocking TSLP or the immunoreceptor NKG2D but not CD4+ T cells. We conclude that atopy is protective against skin cancer in our experimental model and that the mechanism involves keratinocytes communicating with cells of the immune system via signalling elements that normally protect against environmental assaults.DOI: http://dx.doi.org/10.7554/eLife.01888.001. Copyright Ā© 2014, Cipolat et al.

    • Immunology and Microbiology
    IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence.

    In PLoS Pathogens on 10 August 2012 by Mandaric, S., Walton, S. M., et al.

    PubMed

    IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-Ī³ and TNF-Ī± as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10(-/-) mice led to faster control of lytic viral replication, but this came at the expense of TNF-Ī± mediated immunopathology. Taken together, our data show that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-adaptive immune cell crosstalk, thereby impacting beneficially on the ensuing virus-host balance for both the virus and the host.

    • Immunology and Microbiology
    • ,
    • Neuroscience
    NKG2D signaling on CD8āŗ T cells represses T-bet and rescues CD4-unhelped CD8āŗ T cell memory recall but not effector responses.

    In Nature Medicine on 26 February 2012 by Zloza, A., Kohlhapp, F. J., et al.

    PubMed

    CD4-unhelped CD8(+) T cells are functionally defective T cells primed in the absence of CD4(+) T cell help. Given the co-stimulatory role of natural-killer group 2, member D protein (NKG2D) on CD8(+) T cells, we investigated its ability to rescue these immunologically impotent cells. We demonstrate that augmented co-stimulation through NKG2D during priming paradoxically rescues memory, but not effector, CD8(+) T cell responses. NKG2D-mediated rescue is characterized by reversal of elevated transcription factor T-box expressed in T cells (T-bet) expression and recovery of interleukin-2 and interferon-Ī³ production and cytolytic responses. Rescue is abrogated in CD8(+) T cells lacking NKG2D. Augmented co-stimulation through NKG2D confers a high rate of survival to mice lacking CD4(+) T cells in a CD4-dependent influenza model and rescues HIV-specific CD8(+) T cell responses from CD4-deficient HIV-positive donors. These findings demonstrate that augmented co-stimulation through NKG2D is effective in rescuing CD4-unhelped CD8(+) T cells from their pathophysiological fate and may provide therapeutic benefits.