ReadyTag anti-HA

Catalog #RT0268
Product Citations:
3
Clone:
12CA5
As low as $164.00

$164.00 - $1,801.00

Choose an Option...
  • 25 mg - $1,801.00
  • 5 mg - $574.00
  • 1 mg - $164.00
In stock
Only %1 left

Product Details

The 12CA5 monoclonal antibody recognizes the 9-amino acid sequence YPYDVPDYA, derived from influenza virus hemagglutinin (HA). HA is commonly added to proteins of interest using recombinant DNA technology. The HA tag can then be used for detection or purification of the tagged protein.

Specifications

Isotype Mouse IgG2b
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen Influenza virus hemagglutinin protein (AA 98-106)
Reported Applications ELISA
Western blot
Immunoprecipitation
Immunofluorescence
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Ī¼M filtered
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_2687791
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.
Western Blot
Soong, R. S., et al. (2013). "Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53" PLoS ONE 8(2): e56912. PubMed

The pivotal role of p53 as a tumor suppressor protein is illustrated by the fact that this protein is found mutated in more than 50% of human cancers. In most cases, mutations in p53 greatly increase the otherwise short half-life of this protein in normal tissue and cause it to accumulate in the cytoplasm of tumors. The overexpression of mutated p53 in tumor cells makes p53 a potentially desirable target for the development of cancer immunotherapy. However, p53 protein represents an endogenous tumor-associated antigen (TAA). Immunization against a self-antigen is challenging because an antigen-specific immune response likely generates only low affinity antigen-specific CD8(+) T-cells. This represents a bottleneck of tumor immunotherapy when targeting endogenous TAAs expressed by tumors. The objective of the current study is to develop a safe cancer immunotherapy using a naked DNA vaccine. The vaccine employs a xenogeneic p53 gene to break immune tolerance resulting in a potent therapeutic antitumor effect against tumors expressing mutated p53. Our study assessed the therapeutic antitumor effect after immunization with DNA encoding human p53 (hp53) or mouse p53 (mp53). Mice immunized with xenogeneic full length hp53 DNA plasmid intramuscularly followed by electroporation were protected against challenge with murine colon cancer MC38 while those immunized with mp53 DNA were not. In a therapeutic model, established MC38 tumors were also well controlled by treatment with hp53 DNA therapy in tumor bearing mice compared to mp53 DNA. Mice vaccinated with hp53 DNA plasmid also exhibited an increase in mp53-specific CD8(+) T-cell precursors compared to vaccination with mp53 DNA. Antibody depletion experiments also demonstrated that CD8(+) T-cells play crucial roles in the antitumor effects. This study showed intramuscular vaccination with xenogeneic p53 DNA vaccine followed by electroporation is capable of inducing potent antitumor effects against tumors expressing mutated p53 through CD8(+) T cells.

Immunoprecipitation
Bonham, K., et al. (2010). "Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production" FEBS J 277(9): 2096-2108. PubMed

The protein arginine methyltransferase (PRMT) family of enzymes catalyzes the transfer of methyl groups from S-adenosylmethionine to the guanidino nitrogen atom of peptidylarginine to form monomethylarginine or dimethylarginine. We created several less polar analogs of the specific PRMT inhibitor arginine methylation inhibitor-1, and one such compound was found to have improved PRMT inhibitory activity over the parent molecule. The newly identified PRMT inhibitor modulated T-helper-cell function and thus may serve as a lead for further inhibitors useful for the treatment of immune-mediated disease.

Western Blot
Shibasaki, Y., et al. (1997). "Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo" J Biol Chem 272(12): 7578-7581. PubMed

The Rho family GTP-binding proteins have been known to mediate extracellular signals to the actin cytoskeleton. Although several Rho interacting proteins have been found, downstream signals have yet to be determined. Many actin-binding proteins are known to be regulated by phosphatidylinositol 4,5-bisphosphate in vitro. Rho has been shown to enhance the activity of phosphatidylinositol-4-phosphate 5-kinase (PI4P5K), the phosphatidylinositol 4,5-bisphosphate synthesizing enzyme. Recently we isolated several isoforms of type I PI4P5K. Here we report that PI4P5K Ialpha induces massive actin polymerization resembling ā€œpine needlesā€ in COS-7 cells in vivo. When truncated from the C terminus to amino acid 308 of PI4P5K Ialpha, both kinase activity and actin polymerizing activity were lost. Although the dominant negative form of Rho, RhoN19, alone decreased actin fibers, those induced by PI4P5K were not affected by the coexpression of RhoN19. These results suggest that PI4P5K is located downstream from Rho and mediates signals for actin polymerization through its phosphatidylinositol-4-phosphate 5-kinase activity.

Immunofluorescence
Zhang, J., et al. (1996). "Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization" J Biol Chem 271(31): 18302-18305. PubMed

The process of agonist-promoted internalization (sequestration) of G protein-coupled receptors (GPCRs) is intimately linked to the regulation of GPCR responsiveness. Following agonist-mediated desensitization, sequestration of GPCR is presumably associated with the dephosphorylation and recycling of functional receptors. However, the exact mechanisms responsible for GPCR sequestration, even for the prototypic beta2-adrenergic receptor (beta2AR), have remained controversial. We demonstrate here that dynamin, a GTPase that regulates the formation and internalization of clathrin-coated vesicles, is essential for the agonist-promoted sequestration of the beta2AR, suggesting that the beta2AR internalizes via the clathrin-coated vesicle-mediated endocytic pathway. In contrast, internalization of the angiotensin II type 1A receptor (AT1AR), another typical GPCR, does not require dynamin. In addition, the AT1AR internalizes independent of the function of beta-arrestin, a critical component for beta2AR cellular trafficking, but additional AT1ARs are mobilized to the dynamin-dependent pathway upon overexpression of beta-arrestin. These findings demonstrate that GPCRs can utilize distinct endocytic pathways, distinguishable by dynamin and beta-arrestin, and that beta-arrestins function as adaptor proteins specifically targeting GPCRs for dynamin-dependent endocytosis via clathrin-coated vesicles.

    Machine learning-driven multifunctional peptide engineering for sustained ocular drug delivery.

    In Nature Communications on 2 May 2023 by Hsueh, H. T., Chou, R. T., et al.

    PubMed

    Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond. Ā© 2023. The Author(s).

    • WB
    • ,
    • Genetics
    • ,
    • Immunology and Microbiology
    Surfactant protein A reduces TLR4 and inflammatory cytokine mRNA levels in neonatal mouse ileum.

    In Scientific Reports on 28 January 2021 by Liu, L., Aron, C. Z., et al.

    PubMed

    Levels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A-/-) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A-/- mice compared to wild type mice. Gavage of neonatal SP-A-/- mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A-/- mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.

    • Immunology and Microbiology
    An anti-Gn glycoprotein antibody from a convalescent patient potently inhibits the infection of severe fever with thrombocytopenia syndrome virus.

    In PLoS Pathogens on 1 February 2019 by Kim, K. H., Kim, J., et al.

    PubMed

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease localized to China, Japan, and Korea that is characterized by severe hemorrhage and a high fatality rate. Currently, no specific vaccine or treatment has been approved for this disease. To develop a therapeutic agent for SFTS, we isolated antibodies from a phage-displayed antibody library that was constructed from a patient who recovered from SFTS virus (SFTSV) infection. One antibody, designated as Ab10, was reactive to the Gn envelope glycoprotein of SFTSV and protected host cells and A129 mice from infection in both in vitro and in vivo experiments. Notably, Ab10 protected 80% of mice, even when injected 5 days after inoculation with a lethal dose of SFTSV. Using cross-linker assisted mass spectrometry and alanine scanning, we located the non-linear epitope of Ab10 on the Gn glycoprotein domain II and an unstructured stem region, suggesting that Ab10 may inhibit a conformational alteration that is critical for cell membrane fusion between the virus and host cell. Ab10 reacted to recombinant Gn glycoprotein in Gangwon/Korea/2012, HB28, and SD4 strains. Additionally, based on its epitope, we predict that Ab10 binds the Gn glycoprotein in 247 of 272 SFTSV isolates previously reported. Together, these data suggest that Ab10 has potential to be developed into a therapeutic agent that could protect against more than 90% of reported SFTSV isolates.

    • Immunology and Microbiology
    An anti-Gn glycoprotein antibody from a convalescent patient potently inhibits the infection of severe fever with thrombocytopenia syndrome virus

    Preprint on BioRxiv : the Preprint Server for Biology on 3 October 2018 by Kim, K. H., Kim, J., et al.

    PubMed

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease localized to China, Japan, and Korea that is characterized by severe hemorrhage and a high fatality rate. Currently, no specific vaccine or treatment has been approved for this disease. To develop a therapeutic agent for SFTS, we isolated antibodies from a phage-displayed antibody library that was constructed from a patient who recovered from SFTS virus (SFTSV) infection. One antibody, designated as Ab10, was reactive to the Gn envelope glycoprotein of SFTSV and protected host cells and A129 mice from infection in both in vitro and in vivo experiments. Notably, Ab10 protected 80% of mice, even when injected 5 days after inoculation with a lethal dose of SFTSV. Using cross-linker assisted mass spectrometry and alanine scanning, we located the non-linear epitope of Ab10 on the Gn glycoprotein domain II and an unstructured stem region, suggesting that Ab10 may inhibit a conformational alteration that is critical for cell membrane fusion between the virus and host cell. Ab10 reacted to recombinant Gn glycoprotein in Gangwon/Korea/2012, HB28, and SD4 strains. Additionally, based on its epitope, we predict that Ab10 binds the Gn glycoprotein in 247 of 272 reported SFTSV isolates previously reported. Together, these data suggest that Ab10 has potential to be developed into a therapeutic agent that could protect against more than 90% of reported SFTSV isolates. h4>Author summary/h4> Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease localized to China, Japan, and Korea. This tick-borne virus has infected more than 5,000 humans with a 6.4% to 20.9% fatality rate. Currently, there are no prophylactic or therapeutic measures against this virus. Historically, antibodies from patients who recovered from viral infection have been used to treat new patients. Until now, one recombinant monoclonal antibody was approved for the prophylaxis of respiratory syntial virus infection. We selected 10 antibodies from a patient who recovered from SFTS and found that one antibody potently inhibited SFTS viral infection in both test tube and animal studies. We determined the binding site of this antibody to SFTS virus, which allowed us to predict that this antibody could bind 247 out of 272 SFTS virus isolates reported up to now. We anticipate that this antibody could be developed into a therapeutic measure against SFTS.