InVivoMAb anti-Powassan virus E protein
Product Description
Specifications
Isotype | Mouse IgG2c, κ |
---|---|
Recommended Dilution Buffer | InVivoPure pH 7.0 Dilution Buffer |
Immunogen | POWV strain SPO or POWV mRNA vaccine |
Reported Applications |
in vivo protection against POWV in vitro neutralization of POWV Antibody Dependent Enhancement (ADE) Foci reduction neutralization test (FRNT) Flow cytometry ELISA |
Formulation |
PBS, pH 7.0 Contains no stabilizers or preservatives |
Endotoxin |
≤1EU/mg (≤0.001EU/μg) Determined by LAL gel clotting assay |
Purity |
≥95% Determined by SDS-PAGE |
Sterility | 0.2 µm filtration |
Production | Purified from cell culture supernatant in an animal-free facility |
Purification | Protein A |
Molecular Weight | 150 kDa |
Storage | The antibody solution should be stored at the stock concentration at 4°C. Do not freeze. |
Need a Custom Formulation? | See All Antibody Customization Options |
Application References
Flow Cytometry, ELISA, in vivo protection against WNV infection, Antibody-dependent enhancement (ADE), Focus reduction neutralization test (FRNT), In vitro neutralization of POWV
VanBlargan LA, Errico JM, Kafai NM, Burgomaster KE, Jethva PN, Broeckel RM, Meade-White K, Nelson CA, Himansu S, Wang D, Handley SA, Gross ML, Best SM, Pierson TC, Fremont DH, Diamond MS. (2021). "Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses" J Exp Med 10.1084/jem.20210174.
PubMed
Although Powassan virus (POWV) is an emerging tick-transmitted flavivirus that causes severe or fatal neuroinvasive disease in humans, medical countermeasures have not yet been developed. Here, we developed a panel of neutralizing anti-POWV mAbs recognizing six distinct antigenic sites. The most potent of these mAbs bind sites within domain II or III of the envelope (E) protein and inhibit postattachment viral entry steps. A subset of these mAbs cross-react with other flaviviruses. Both POWV type-specific and cross-reactive neutralizing mAbs confer protection in mice against POWV infection when given as prophylaxis or postexposure therapy. Several cross-reactive mAbs mapping to either domain II or III also protect in vivo against heterologous tick-transmitted flaviviruses including Langat and tick-borne encephalitis virus. Our experiments define structural and functional correlates of antibody protection against POWV infection and identify epitopes targeted by broadly neutralizing antibodies with therapeutic potential against multiple tick-borne flaviviruses.
Huang RY, Krystek SR, Felix N, Graziano RF, Srinivasan M, Pashine A, Chen G. (2018). "Hydrogen/deuterium exchange mass spectrometry and computational modeling reveal a discontinuous epitope of an antibody/TL1A Interaction" MAbs 10.1080/19420862.2017.1393595.
PubMed
TL1A, a tumor necrosis factor-like cytokine, is a ligand for the death domain receptor DR3. TL1A, upon binding to DR3, can stimulate lymphocytes and trigger secretion of proinflammatory cytokines. Therefore, blockade of TL1A/DR3 interaction may be a potential therapeutic strategy for autoimmune and inflammatory diseases. Recently, the anti-TL1A monoclonal antibody 1 (mAb1) with a strong potency in blocking the TL1A/DR3 interaction was identified. Here, we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to obtain molecular-level details of mAb1's binding epitope on TL1A. HDX coupled with electron-transfer dissociation MS provided residue-level epitope information. The HDX dataset, in combination with solvent accessible surface area (SASA) analysis and computational modeling, revealed a discontinuous epitope within the predicted interaction interface of TL1A and DR3. The epitope regions span a distance within the approximate size of the variable domains of mAb1's heavy and light chains, indicating it uses a unique mechanism of action to block the TL1A/DR3 interaction.