InVivoMAb anti-mouse TIM-4
Product Details
The RMT4-54 monoclonal antibody reacts with mouse T cell immunoglobulin and mucin domain 4 (TIM-4) a phosphatidylserine-binding receptor and member of the Ig superfamily. TIM-4 is preferentially expressed on antigen-presenting cells. TIM-4 is thought to enhance the engulfment of apoptotic cells and play a role in regulating T cell proliferation. The RMT4-54 antibody has been shown to block TIM-4 in vitro.Specifications
Isotype | Rat IgG2a,Ā Īŗ |
---|---|
Recommended Isotype Control(s) | InVivoMAb rat IgG2a isotype control, anti-trinitrophenol |
Recommended Dilution Buffer | InVivoPure pH 7.0 Dilution Buffer |
Conjugation | This product is unconjugated. Conjugation is available via our Antibody Conjugation Services. |
Immunogen | Mouse TIM-4-Ig fusion protein |
Reported Applications |
in vitro TIM-4 blocking Immunofluorescence Flow cytometry |
Formulation |
PBS, pH 7.0 Contains no stabilizers or preservatives |
Endotoxin |
<2EU/mg (<0.002EU/μg) Determined by LAL gel clotting assay |
Purity |
>95% Determined by SDS-PAGE |
Sterility | 0.2 µm filtration |
Production | Purified from cell culture supernatant in an animal-free facility |
Purification | Protein G |
RRID | AB_2687708 |
Molecular Weight | 150 kDa |
Storage | The antibody solution should be stored at the stock concentration at 4°C. Do not freeze. |
Recommended Products
Flow Cytometry
Lal, G., et al. (2015). "Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance" Transplantation 99(9): 1817-1828. PubMed
BACKGROUND: Blocking CD40-CD40L costimulatory signals induces transplantation tolerance. Although B-cell depletion prevents alloantibody formation, nonhumoral functions of B cells in tolerance have not been well characterized. We investigated whether specific subsets of B cell or B cell-derived interleukin (IL)-10 contribute to tolerance. METHODS: Wild type C57BL/6, or B cell-specific interleukin (IL)-10 (CD19-Cre::IL-10) mice, received vascularized BALB/c cardiac allografts. BALB/c donor-specific splenocyte transfusion and anti-CD40L monoclonal antibody were used as tolerogen. B cells were depleted with antimouse CD20 monoclonal antibody. Various B-cell subsets were purified and characterized by flow cytometry, reverse transcription polymerase chain reaction, and adoptive transfer. RESULTS: B-cell depletion prevented costimulatory blockade-induced allogeneic tolerance. Costimulatory blockade increased IL-10 in marginal zone precursor (MZP) B cells, but not other subsets. In particular, costimulatory blockade did not change other previously defined regulatory B-cell subsets (Breg), including CD5CD1d Breg or expression of TIM1 or TIM4 on these Breg or other Breg cell subsets. Costimulatory blockade also induced IL-21R expression in MZP B cells, and IL-21R MZP B cells expressed even more IL-10. B-cell depletion or IL-10 deficiency in B cells prevented tolerance in a cardiac allograft model, resulting in rapid acute cardiac allograft rejection. Adoptive transfer of wild type MZP B cells but not other subsets to B cell-specific IL-10 deficient mice prevented graft rejection. CONCLUSIONS: CD40 costimulatory blockade induces MZP B cell IL-10 which is necessary for tolerance. These observations have implications for understanding tolerance induction and how B cell depletion may prevent tolerance.
Immunofluorescence, Flow Cytometry
Tacke, R., et al. (2015). "The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus" Sci Rep 5: 10055. PubMed
Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset.
in vitro TIM-4 blocking
Nakayama, M., et al. (2009). "Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation" Blood 113(16): 3821-3830. PubMed
Phagocytes such as macrophages and dendritic cells (DCs) engulf apoptotic cells to maintain peripheral immune tolerance. However, the mechanism for the recognition of dying cells by phagocytes is not fully understood. Here, we demonstrate that T-cell immunoglobulin mucin-3 (Tim-3) recognizes apoptotic cells through the FG loop in the IgV domain, and is crucial for clearance of apoptotic cells by phagocytes. Whereas Tim-4 is highly expressed on peritoneal resident macrophages, Tim-3 is expressed on peritoneal exudate macrophages, monocytes, and splenic DCs, indicating distinct Tim-mediated phagocytic pathways used by different phagocytes. Furthermore, phagocytosis of apoptotic cells by CD8(+) DCs is inhibited by anti-Tim-3 mAb, resulting in a reduced cross-presentation of dying cell-associated antigens in vitro and in vivo. Administration of anti-Tim-3 as well as anti-Tim-4 mAb induces autoantibody production. These results indicate a crucial role for Tim-3 in phagocytosis of apoptotic cells and cross-presentation, which may be linked to peripheral tolerance.
- Mus musculus (House mouse),
Loss of TIM4-Dependent Efferocytosis in Kupffer Cells Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis
Preprint on BioRxiv : the Preprint Server for Biology on 2 February 2024 by Shi, H., Wang, X., et al.
Background and aims Hepatocyte apoptosis is a key feature of non-alcoholic steatohepatitis (NASH), but the fate of apoptotic hepatocytes in NASH is poorly understood. Herein we explore the hypothesis that impaired TIM4-mediated clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in NASH and drives the progression to liver fibrosis. Methods Kupffer cell (KC)-TIM4 expression and efferocytosis were assayed in normal and NASH liver from humans and diet-induced NASH mice. The engulfment of human and mouse apoptotic hepatocytes by primary human and mouse liver KCs was assayed ex vivo . Causation was assessed in NASH mice using anti-TIM4 antibodies, KC-TIM4-knockout, or inducible KC-TIM4 expression, with analyses focused on efferocytosis of apoptotic hepatocytes by liver macrophages and liver fibrosis. Results In human and mouse NASH liver, apoptotic hepatocytes accumulated and was associated with the loss of the KC efferocytosis receptor TIM4. Anti-TIM4 inhibited the engulfment of apoptotic hepatocytes by primary human and mouse liver KCs ex vivo , and anti-TIM4 administration to early NASH mice worsened liver macrophage efferocytosis and accelerated the progression to fibrotic NASH. A similar result was obtained by genetically deleting TIM4 in KCs in NASH mice. Most importantly, genetic restoration of macrophage TIM4 in NASH mice enhanced the clearance of apoptotic hepatocytes by liver macrophages and decreased liver fibrosis. Conclusions The loss of macrophage TIM4 that occurs during NASH progression impairs the clearance of apoptotic hepatocytes by liver macrophages, which subsequently promotes the progression to fibrotic NASH. This pathogenic sequence of events can be prevented by restoring macrophage TIM4, suggesting that future therapeutic approaches designed to boost TIM4 expression in liver macrophages could represent a novel strategy to prevent fibrotic NASH progression. Lay summary Nonalcoholic steatohepatitis (NASH) is emerging as the leading cause of liver disease, but the processes leading to liver fibrosis in NASH, which determines clinical outcome, are incompletely understood. Our study provides evidence impaired clearance of dead liver cells by liver macrophages in NASH, which is due to loss of a macrophage receptor called TIM4, contributes to liver fibrosis. Knowledge of this process may suggest new ways to bolster the clearance of dead liver cells in NASH and thereby prevent the progression to liver fibrosis and subsequent liver disease.