InVivoMAb anti-mouse PD-L2 (B7-DC)

Catalog #BE0112
Product Citations:
13
Clone:
TY25
Reactivities:
Mouse

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The TY25 monoclonal antibody reacts with mouse PD-L2 (programmed death ligand 2) also known as B7-DC or CD273. PD-L2 is a 25 kDa type I transmembrane protein that belongs to the B7 family of the Ig superfamily. PD-L2 is expressed on monocytes, macrophages and subsets of dendritic cells. PD-L2 binds to its receptor, PD-1, found on CD4 and CD8 thymocytes as well as activated T and B lymphocytes and myeloid cells. Engagement of PD-L2 with PD-1 leads to inhibition of TCR-mediated T cell proliferation and cytokine production. The TY25 antibody has been reported to block PD-1 mediated interactions in vivo.

Specifications

Isotype Rat IgG2a, κ
Recommended Isotype Control(s) InVivoMAb rat IgG2a isotype control, anti-trinitrophenol
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen Mouse PD-L2 transfected cell line
Reported Applications in vivo PD-L2 blockade
in vitro PD-L2 blockade
Immunohistochemistry (frozen)
Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/μg)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_10950106
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
in vivo PD-L2 blockade
Jaworska, K., et al. (2015). "Both PD-1 ligands protect the kidney from ischemia reperfusion injury" J Immunol 194(1): 325-333. PubMed

Acute kidney injury (AKI) is a common problem in hospitalized patients that enhances morbidity and mortality and promotes the development of chronic and end-stage renal disease. Ischemia reperfusion injury (IRI) is one of the major causes of AKI and is characterized by uncontrolled renal inflammation and tubular epithelial cell death. Our recent studies demonstrated that regulatory T cells (Tregs) protect the kidney from ischemia reperfusion-induced inflammation and injury. Blockade of programmed death-1 (PD-1) on the surface of Tregs, prior to adoptive transfer, negates their ability to protect against ischemic kidney injury. The present study was designed to investigate the role of the known PD-1 ligands, PD-L1 and PD-L2, in kidney IRI. Administration of PD-L1 or PD-L2 blocking Abs prior to mild or moderate kidney IRI significantly exacerbated the loss of renal function, renal inflammation, and acute tubular necrosis compared with mice receiving isotype control Abs. Interestingly, blockade of both PD-1 ligands resulted in worse injury, dysfunction, and inflammation than did blocking either ligand alone. Genetic deficiency of either PD-1 ligand also exacerbated kidney dysfunction and acute tubular necrosis after subthreshold ischemia. Bone marrow chimeric studies revealed that PD-L1 expressed on non-bone marrow-derived cells is critical for this resistance to IRI. Finally, blockade of either PD-1 ligand negated the protective ability of adoptively transferred Tregs in IRI. These findings suggest that PD-L1 and PD-L2 are nonredundant aspects of the natural protective response to ischemic injury and may be novel therapeutic targets for AKI.

in vivo PD-L2 blockade
McKay, J. T., et al. (2015). "PD-1 suppresses protective immunity to Streptococcus pneumoniae through a B cell-intrinsic mechanism" J Immunol 194(5): 2289-2299. PubMed

Despite the emergence of the programmed cell death 1 (PD-1):PD-1 ligand (PD-L) regulatory axis as a promising target for treating multiple human diseases, remarkably little is known about how this pathway regulates responses to extracellular bacterial infections. We found that PD-1(-/-) mice, as well as wild-type mice treated with a PD-1 blocking Ab, exhibited significantly increased survival against lethal Streptococcus pneumoniae infection following either priming with low-dose pneumococcal respiratory infection or S. pneumoniae-capsular polysaccharide immunization. Enhanced survival in mice with disrupted PD-1:PD-L interactions was explained by significantly increased proliferation, isotype switching, and IgG production by pneumococcal capsule-specific B cells. Both PD-L, B7-H1 and B7-DC, contributed to PD-1-mediated suppression of protective capsule-specific IgG. Importantly, PD-1 was induced on capsule-specific B cells and suppressed IgG production and protection against pneumococcal infection in a B cell-intrinsic manner. To our knowledge, these results provide the first demonstration of a physiologic role for B cell-intrinsic PD-1 expression in vivo. In summary, our study reveals that B cell-expressed PD-1 plays a central role in regulating protection against S. pneumoniae, and thereby represents a promising target for bolstering immunity to encapsulated bacteria.

in vivo PD-L2 blockade
Tkachev, V., et al. (2015). "Programmed death-1 controls T cell survival by regulating oxidative metabolism" J Immunol 194(12): 5789-5800. PubMed

The coinhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly upregulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1(Hi)ROS(Hi) phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels, and PD-1-driven increases in ROS were dependent upon the oxidation of fatty acids, because treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by antioxidants. Furthermore, PD-1-driven changes in ROS were fundamental to establishing a cell’s susceptibility to subsequent metabolic inhibition, because blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing ROS in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic.

in vivo PD-L2 blockade, in vitro PD-L2 blockade
Erickson, J. J., et al. (2014). "Programmed death-1 impairs secondary effector lung CD8(+) T cells during respiratory virus reinfection" J Immunol 193(10): 5108-5117. PubMed

Reinfections with respiratory viruses are common and cause significant clinical illness, yet precise mechanisms governing this susceptibility are ill defined. Lung Ag-specific CD8(+) T cells (T(CD8)) are impaired during acute viral lower respiratory infection by the inhibitory receptor programmed death-1 (PD-1). To determine whether PD-1 contributes to recurrent infection, we first established a model of reinfection by challenging B cell-deficient mice with human metapneumovirus (HMPV) several weeks after primary infection, and found that HMPV replicated to high titers in the lungs. A robust secondary effector lung TCD8 response was generated during reinfection, but these cells were more impaired and more highly expressed the inhibitory receptors PD-1, LAG-3, and 2B4 than primary T(CD8). In vitro blockade demonstrated that PD-1 was the dominant inhibitory receptor early after reinfection. In vivo therapeutic PD-1 blockade during HMPV reinfection restored lung T(CD8) effector functions (i.e., degranulation and cytokine production) and enhanced viral clearance. PD-1 also limited the protective efficacy of HMPV epitope-specific peptide vaccination and impaired lung T(CD8) during heterotypic influenza virus challenge infection. Our results indicate that PD-1 signaling may contribute to respiratory virus reinfection and evasion of vaccine-elicited immune responses. These results have important implications for the design of effective vaccines against respiratory viruses.

in vivo PD-L2 blockade, Flow Cytometry
van der Werf, N., et al. (2013). "Th2 cell-intrinsic hypo-responsiveness determines susceptibility to helminth infection" PLoS Pathog 9(3): e1003215. PubMed

The suppression of protective Type 2 immunity is a principal factor driving the chronicity of helminth infections, and has been attributed to a range of Th2 cell-extrinsic immune-regulators. However, the intrinsic fate of parasite-specific Th2 cells within a chronic immune down-regulatory environment, and the resultant impact such fate changes may have on host resistance is unknown. We used IL-4gfp reporter mice to demonstrate that during chronic helminth infection with the filarial nematode Litomosoides sigmodontis, CD4(+) Th2 cells are conditioned towards an intrinsically hypo-responsive phenotype, characterised by a loss of functional ability to proliferate and produce the cytokines IL-4, IL-5 and IL-2. Th2 cell hypo-responsiveness was a key element determining susceptibility to L. sigmodontis infection, and could be reversed in vivo by blockade of PD-1 resulting in long-term recovery of Th2 cell functional quality and enhanced resistance. Contrasting with T cell dysfunction in Type 1 settings, the control of Th2 cell hypo-responsiveness by PD-1 was mediated through PD-L2, and not PD-L1. Thus, intrinsic changes in Th2 cell quality leading to a functionally hypo-responsive phenotype play a key role in determining susceptibility to filarial infection, and the therapeutic manipulation of Th2 cell-intrinsic quality provides a potential avenue for promoting resistance to helminths.

in vivo PD-L2 blockade
Jensen, K. D., et al. (2013). "Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15" Infect Immun 81(6): 2156-2167. PubMed

Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-kappaB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyer’s patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut.

in vivo PD-L2 blockade
Hafalla, J. C., et al. (2012). "The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology" PLoS Pathog 8(2): e1002504. PubMed

The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-gamma production, increased intravascular arrest of both parasitised erythrocytes and CD8(+) T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-gamma or depletion of CD8(+) T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites.

in vivo PD-L2 blockade, Immunohistochemistry (frozen)
Huber, S., et al. (2010). "Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2" Blood 116(17): 3311-3320. PubMed

Alternatively activated macrophages (AAM) accumulate in tissues during Th2-associated immune responses like helminth infections and allergic disorders. These cells differentiate in response to interleukin 4 (IL-4)/IL-13-mediated activation of Stat6 and possess potent inhibitory activity against T cells. The molecular mechanism that leads to T-cell suppression remains unclear and could involve soluble factors or inhibitory ligands. Microarray analysis revealed that the inhibitory ligand, programmed death ligand 2 (PD-L2) was strongly induced by IL-4 in macrophages from wild-type but not Stat6-deficient mice. PD-L2 expression correlated with other established markers for AAM-like Relm-alpha/Fizz1, arginase1, or Ym1 and thereby serves as useful surface marker to identify and isolate AAM from tissues. Antibodies against PD-L2 blocked the inhibitory activity of AAM and retroviral expression of PD-L2 in macrophages from Stat6(-/-) mice was sufficient to inhibit T-cell proliferation, which demonstrates that PD-L2 mediates potent and nonredundant inhibition of T cells independently of other Stat6-regulated genes. Infection of conditional IL-4/IL-13-deficient mice with the helminth Nippostrongylus brasiliensis further showed that PD-L2 expression was dependent on IL-4/IL-13 from Th2 cells. In vivo blockade of PD-L2 during N brasiliensis infection caused an enhanced Th2 response in the lung, indicating that AAM inhibit Th2 cells by expression of PD-L2.

    • Mus musculus (House mouse)
    • ,
    • Endocrinology and Physiology
    PD-L1 is required for estrogen-induced protection against severe EAE in IL-10 deficient mice1.

    In Metabolic Brain Disease on 1 February 2023 by Offner, H., Lockwood, D., et al.

    PubMed

    IL-10 knockout (KO) mice can be protected against experimental autoimmune encephalomyelitis (EAE) with low-dose estrogen (E2) treatment similar to wild type (WT) mice, indicating that IL-10 is not required for E2-induced EAE protection. Our previous study demonstrated that E2 treatment induced an increase in programmed death ligands 1 (PD-L1) and 2 (PD-L2) on monocytes and macrophages in the periphery and within the CNS. In this study, we selectively inhibited the function of PD-L1 and PD-L2 to evaluate their critical role in maintaining E2-induced protection against EAE in IL-10-KO mice. This study used female IL-10 KO mice pre-treated with either E2 or sham pellets seven days prior to induction of EAE and subsequently treated with Vehicle or antibodies to PD-L1, PD-L2 or respective isotype controls. Mice were scored daily for EAE severity over 21 days post-EAE induction. Cells from the spleen and brain were evaluated by flow cytometry. Differences in EAE severity were assessed in E2 and sham pre-treated IL-10-KO mice treated with α-PD-L1 or α-PD-L2 antibodies over the course of disease compared to treatment with Vehicle or isotype control antibodies. The results revealed real-time development of severe EAE in E2-pre-treated IL-10-KO mice treated with α-PD-L1 but not α-PD-L2 antibodies, mediated in part by increased percentages of activated CD74+CD11b+ myeloid cells in spleen and brain as well as splenic B-cells, T-cells and CD73+ cells. These results demonstrate unequivocally that PD-L1 but not PD-L2 was required to retain the inhibitory effects of E2 on clinical EAE scores in female IL-10-KO mice and further implicate the emergence of the MIF/CD74 axis as a contributing pathogenic mechanism. © 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

    • In Vivo
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mass Spec
    • ,
    • Mus musculus (House mouse)
    Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade.

    In Cancer Discovery on 2 December 2022 by Krisnawan, V. E., Belle, J. I., et al.

    PubMed

    The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711. ©2022 American Association for Cancer Research.

    • Mus musculus (House mouse)
    • ,
    • Endocrinology and Physiology
    PD-L1 is Required for Estrogen-induced Protection Against Severe EAE in IL-10 Deficient Mice

    Preprint on Research Square on 7 November 2022 by Offner, H., Lockwood, D., et al.

    PubMed

    Background: IL-10 knockout (KO) mice can be protected against experimental autoimmune encephalomyelitis (EAE) with low-dose estrogen (E2) treatment similar to wild type (WT) mice, indicating that IL-10 is not required for E2-induced EAE protection. Our previous study demonstrated that E2 treatment induced an increase in programmed death ligands 1 (PD-L1) and 2 (PD-L2) on monocytes and macrophages in the periphery and within the CNS. In this study, we selectively inhibited the function of PD-L1 and PD-L2 to evaluate their critical role in maintaining E2-induced protection against EAE in IL-10-KO mice. Methods This study used female IL-10 KO mice pre-treated with either E2 or sham pellets seven days prior to induction of EAE and subsequently treated with Vehicle or antibodies to PD-L1, PD-L2 or respective isotype controls. Mice were scored daily for EAE severity over 21 days post-immunization for EAE induction. Cells from the spleen and brain were evaluated by flow cytometry. Results Differences in EAE severity were assessed in E2 and sham pre-treated IL-10-KO mice treated with α-PD-L1 or α-PD-L2 antibodies over the course of disease compared to treatment with Vehicle or anti-isotype antibodies. The results revealed real-time development of severe EAE in E2-pre-treated IL-10-KO mice treated with α-PD-L1 but not α-PD-L2 antibodies, mediated in part by increased percentages of activated CD74 + CD11b + myeloid cells in spleen and brain as well as splenic B-cells, T-cells and CD73 + cells. Conclusion These results demonstrate unequivocally that PD-L1 but not PD-L2 was required to retain the inhibitory effects of E2 on clinical EAE scores in female IL-10-KO mice and further implicate the emergence of the MIF/CD74 axis as a contributing pathogenic mechanism.

    • Mus musculus (House mouse)
    The efficacy of chemotherapy is limited by intratumoural senescent cells that persist through the upregulation of PD-L2

    Preprint on BioRxiv : the Preprint Server for Biology on 4 November 2022 by Chaib, S., López-Domínguez, J. A., et al.

    PubMed

    Anti-cancer therapies often result in a subset of surviving cancer cells that undergo therapy-induced senescence (TIS). Senescent cancer cells strongly modify the intratumoural microenvironment favoring immunosuppression and, thereby, tumour growth. An emerging strategy to optimise current therapies is to combine them with treatments that eliminate senescent cells. To this end, we undertook an unbiased proteomics approach to identify surface markers contributing to senescent cells immune evasion. Through this approach, we discovered that the immune checkpoint inhibitor PD-L2, but not PD-L1, is upregulated across multiple senescent human and murine cells. Importantly, blockade of PD-L2 strongly synergises with genotoxic chemotherapy, causing remission of solid tumours in mice. We show that PD-L2 inhibition prevents the persistence of chemotherapy-induced senescent cells, which exert cell-extrinsic immunomodulatory actions. In particular, upon chemotherapy, tumours deficient in PD-L2 fail to produce cytokines of the CXCL family, do not recruit myeloid-derived suppressor cells (MDSCs) and are eliminated in a CD8 T cell-dependent manner. We conclude that blockade of PD-L2 improves chemotherapy efficacy by reducing the intratumoural burden of senescent cells and their associated recruitment of immunosuppressive cells. These findings provide a novel strategy to exploit vulnerabilities arising in tumour cells as a result of therapy-induced damage and cellular senescence.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Dynamic proteomic change of tumor and immune organs in an immune-competent hepatocellular carcinoma mouse model.

    In American Journal of Cancer Research on 10 May 2022 by Jiao, J., Ji, L., et al.

    PubMed

    Subcutaneous implantation of a human cancer cell line in immune-deficient mice (CDX) is a commonly used tool in preclinical studies for the assessment of potential anti-cancer drugs. As immunotherapy is transforming cancer treatment, tumor models in immunocompetent mice are necessary for us to understand the immune aspects of tumor biology. However, the systemic immune response to the implantation of cancer cells at proteome level is unclear. In this study, we characterized the dynamic proteomic changes of subcutaneous tumors and 5 immune organs (draining lymph node, mesenteric lymph node, spleen, thymus and marrow) at six time points after implantation using a Hepa1-6 derived allograft mouse model. Our data suggest that interaction of the implanted tumor cells with mouse immune system followed the trajectory of "tumor rejection" to "immune evasion" in that the tumor gained the ability to evade the immune system for growth. Furthermore, anti-PDL2 antibody was validated here as an optional immunotherapy strategy to inhibit the growth of Hepa1-6 subcutaneous tumors. These findings from our study provided valuable information for the understanding of tumor and immune interaction and shed light on the rational design for clinical cancer treatment and other preclinical experiments. AJCR Copyright © 2022.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances anti-tumor T cell immunity.

    In Immunity on 12 October 2021 by Sharma, M. D., Pacholczyk, R., et al.

    PubMed

    Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies. Copyright © 2021 Elsevier Inc. All rights reserved.

    • Immunology and Microbiology
    PD-L2 based immune signature confers poor prognosis in HNSCC.

    In Oncoimmunology on 12 August 2021 by Qiao, Y., Liu, C., et al.

    PubMed

    PD-L2 expression is an important predictor of anti-PD-1 therapy efficacy in patients with head and neck squamous cell carcinoma (HNSCC). However, whether the PD-L2-based immune signature can serve as a prognostic biomarker for patients with HNSCC remains unclear. Here, we reported that PD-L2 was positively stained in 62.7% of tumors, which was more than twice as that of PD-L1, and in 61.4% of patients with PD-L1-negative tumors. Survival tree analysis (STA) revealed that PD-L2high was an independent predictor of poor overall survival (OS). Six patterns were generated from STA, demonstrating that patients with PD-L2lowCD3high were associated with an improved median OS of 72 months and prognostic index (PI) of -3.95 (95% CI, -5.14 to -2.76), whereas patients with PD-L2highCD3lowCD8low to a median OS of 10 months and PI of 1.43 (95% CI, 0.56 to 2.30). Analysis of single-cell RNA sequencing showed that PD-L2 expression was associated with IL-6 expression. We confirmed that IL-6 augments PD-L2 expression in HNSCC cell lines. The PD-L2-based immune signature can serve as an effective biomarker for anti-PD-1 therapy. In addition, PD-L2 may serve as a potential immunotherapeutic target, and we propose anti-IL6 therapy in the adjuvant setting for patients with HNSCC with high PD-L2 expression. © 2021 The Author(s). Published with license by Taylor Francis Group, LLC.

    • Immunology and Microbiology
    Interferon-γ/Interleukin-27 Axis Induces Programmed Death Ligand 1 Expression in Monocyte-Derived Dendritic Cells and Restores Immune Tolerance in Central Nervous System Autoimmunity.

    In Frontiers in Immunology on 17 November 2020 by Casella, G., Rasouli, J., et al.

    PubMed

    Antigen (Ag)-specific tolerance induction by intravenous (i. v.) injection of high-dose auto-Ags has been explored for therapy of autoimmune diseases, including multiple sclerosis (MS). It is thought that the advantage of such Ag-specific therapy over non-specific immunomodulatory treatments would be selective suppression of a pathogenic immune response without impairing systemic immunity, thus avoiding adverse effects of immunosuppression. Auto-Ag i.v. tolerance induction has been extensively studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and limited clinical trials demonstrated that it is safe and beneficial to a subset of MS patients. Nonetheless, the mechanisms of i.v. tolerance induction are incompletely understood, hampering the development of better approaches and their clinical application. Here, we describe a pathway whereby auto-Ag i.v. injected into mice with ongoing clinical EAE induces interferon-gamma (IFN-γ) secretion by auto-Ag-specific CD4+ T cells, triggering interleukin (IL)-27 production by conventional dendritic cells type 1 (cDC1). IL-27 then, via signal transducer and activator of transcription 3 activation, induces programmed death ligand 1 (PD-L1) expression by monocyte-derived dendritic cells (moDCs) in the central nervous system of mice with EAE. PD-L1 interaction with programmed cell death protein 1 on pathogenic CD4+ T cells leads to their apoptosis/anergy, resulting in disease amelioration. These findings identify a key role of the IFN-γ/IL-27/PD-L1 axis, involving T cells/cDC1/moDCs in the induction of i.v. tolerance. Copyright © 2020 Casella, Rasouli, Thome, Descamps, Vattikonda, Ishikawa, Boehm, Hwang, Zhang, Xiao, Park, Zhang, Alvarez, Rostami and Ciric.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Immunotherapy using anti-PD-1 and anti-PD-L1 in Leishmania amazonensis-infected BALB/c mice reduce parasite load.

    In Scientific Reports on 30 December 2019 by da Fonseca-Martins, A. M., Ramos, T. D., et al.

    PubMed

    Leishmaniasis is a neglected disease, for which current treatment presents numerous issues. Leishmania amazonensis is the etiological agent of cutaneous and diffuse cutaneous leishmaniasis. The roles of the programmed death-1 (PD-1) receptor on lymphocytes and its ligand (PD-L1) on antigen-presenting cells have been well studied in tumor and other infection models; but little is known about their roles in non-healing cutaneous leishmaniasis. In this study, we observed that L. amazonensis induced PD-1 expression on both CD4+ and CD8+ T cells and PD-L1 on dendritic cells on BALB/c mice. We tested the therapeutic potential of anti-PD-1 and anti-PD-L1 monoclonal antibodies (MoAbs) against a non-healing L. amazonensis infection in BALB/c mice, and that anti-PD-1 and anti-PD-L1 treatment significantly increased IFN-γ-producing CD4+ and CD8+ T cells, respectively. Compared with infection controls, mice treated with anti-PD-1 and anti-PD-L1, but not anti-PD-L2, displayed bigger lesions with significantly lower parasite loads. Treatment did not affect anti-Leishmania antibody (IgM, IgG, IgG1 and IgG2a) or IL-10 production, but anti-PD-1 treatment reduced both IL-4 and TGF-β production. Together, our results highlight the therapeutic potential of an anti-PD-1-based treatment in promoting the reinvigoration of T cells for the control of parasite burden.

    • Immunology and Microbiology
    Programmed Death-1 Restrains the Germinal Center in Type 1 Diabetes.

    In The Journal of Immunology on 15 August 2019 by Martinov, T., Swanson, L. A., et al.

    PubMed

    Programmed death-1 (PD-1) inhibits T and B cell function upon ligand binding. PD-1 blockade revolutionized cancer treatment, and although numerous patients respond, some develop autoimmune-like symptoms or overt autoimmunity characterized by autoantibody production. PD-1 inhibition accelerates autoimmunity in mice, but its role in regulating germinal centers (GC) is controversial. To address the role of PD-1 in the GC reaction in type 1 diabetes, we used tetramers to phenotype insulin-specific CD4+ T and B cells in NOD mice. PD-1 or PD-L1 deficiency, and PD-1 but not PD-L2 blockade, unleashed insulin-specific T follicular helper CD4+ T cells and enhanced their survival. This was concomitant with an increase in GC B cells and augmented insulin autoantibody production. The effect of PD-1 blockade on the GC was reduced when mice were treated with a mAb targeting the insulin peptide:MHC class II complex. This work provides an explanation for autoimmune side effects following PD-1 pathway inhibition and suggests that targeting the self-peptide:MHC class II complex might limit autoimmunity arising from checkpoint blockade. Copyright © 2019 by The American Association of Immunologists, Inc.

    Protection induced by anti-PD-1 and anti-PD-L1 treatment ini>Leishmania amazonensis/i>-infected BALB/c mice

    Preprint on BioRxiv : the Preprint Server for Biology on 1 August 2019 by da Fonseca-Martins, A. M., Ramos, T. D., et al.

    PubMed

    Leishmaniasis is a neglected disease, for which current treatment presents numerous issues. Leishmania amazonensis is the etiological agent of cutaneous and diffuse cutaneous leishmaniasis. The roles of the programmed death-1 (PD-1) receptor on lymphocytes and its ligand (PD-L1) on antigen-presenting cells have been well studied in tumor and other infection models; but little is known about their roles in non-healing cutaneous leishmaniasis. Our previous report of L. amazonensis -induced PD-L1 expression on dendritic cells, in combination with decreased IFN-γ production by CD4 + T cells in C57BL/6 mice, led to a hypothesis that the formation of the PD-1/PD-L1 complex contributes to down-modulation of immune responses, especially T cell suppression, enabling parasite survival and persistence. In this study, we tested the therapeutic potential of anti-PD-1 and anti-PD-L1 monoclonal antibodies (MoAbs) against a non-healing L. amazonensis infection in BALB/c mice. We observed that L. amazonensis induced PD-1 expression on both CD4 + and CD8 + T cells, and that anti-PD-1 and anti-PD-L1 treatment significantly increased IFN-γ-producing CD4 + and CD8 + T cells, respectively. Compared with infection controls, mice that received treatment with anti-PD-1 and anti-PD-L1, but not anti-PD-L2, displayed bigger lesions with significantly lower parasite loads. Treatment did not affect anti- Leishmania antibody or IL-10 production, but anti-PD-1 treatment reduced both IL-4 and TGF-β production. Together, our results highlight the therapeutic potential of an anti-PD-1-based treatment in promoting the reinvigoration of T cells for the control of parasite burden.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Activation of p53 in Immature Myeloid Precursor Cells Controls Differentiation into Ly6c+CD103+ Monocytic Antigen-Presenting Cells in Tumors.

    In Immunity on 16 January 2018 by Sharma, M. D., Rodriguez, P. C., et al.

    PubMed

    CD103+ dendritic cells are critical for cross-presentation of tumor antigens. Here we have shown that during immunotherapy, large numbers of cells expressing CD103 arose in murine tumors via direct differentiation of Ly6c+ monocytic precursors. These Ly6c+CD103+ cells could derive from bone-marrow monocytic progenitors (cMoPs) or from peripheral cells present within the myeloid-derived suppressor cell (MDSC) population. Differentiation was controlled by inflammation-induced activation of the transcription factor p53, which drove upregulation of Batf3 and acquisition of the Ly6c+CD103+ phenotype. Mice with a targeted deletion of p53 in myeloid cells selectively lost the Ly6c+CD103+ population and became unable to respond to multiple forms of immunotherapy and immunogenic chemotherapy. Conversely, increasing p53 expression using a p53-agonist drug caused a sustained increase in Ly6c+CD103+ cells in tumors during immunotherapy, which markedly enhanced the efficacy and duration of response. Thus, p53-driven differentiation of Ly6c+CD103+ monocytic cells represents a potent and previously unrecognized target for immunotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

    • Immunology and Microbiology
    PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism.

    In The Journal of Immunology on 15 September 2017 by McKay, J. T., Haro, M. A., et al.

    PubMed

    B-1 cells produce natural Abs which provide an integral first line of defense against pathogens while also performing important homeostatic housekeeping functions. In this study, we demonstrate that programmed cell death 1 ligand 2 (PD-L2) regulates the production of natural Abs against phosphorylcholine (PC). Naive PD-L2-deficient (PD-L2-/-) mice produced significantly more PC-reactive IgM and IgA. This afforded PD-L2-/- mice with selectively enhanced protection against PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice. PD-L2-/- mice had significantly increased PC-specific CD138+ splenic plasmablasts bearing a B-1a phenotype, and produced PC-reactive Abs largely of the T15 Id. Importantly, PC-reactive B-1 cells expressed PD-L2 and irradiated chimeras demonstrated that B cell-intrinsic PD-L2 expression regulated PC-specific Ab production. In addition to increased PC-specific IgM, naive PD-L2-/- mice and irradiated chimeras reconstituted with PD-L2-/- B cells had significantly higher levels of IL-5, a potent stimulator of B-1 cell Ab production. PD-L2 mAb blockade of wild-type B-1 cells in culture significantly increased CD138 and Blimp1 expression and PC-specific IgM, but did not affect proliferation. PD-L2 mAb blockade significantly increased IL-5+ T cells in culture. Both IL-5 neutralization and STAT5 inhibition blunted the effects of PD-L2 mAb blockade on B-1 cells. Thus, B-1 cell-intrinsic PD-L2 expression inhibits IL-5 production by T cells and thereby limits natural Ab production by B-1 cells. These findings have broad implications for the development of therapeutic strategies aimed at altering natural Ab levels critical for protection against infectious disease, autoimmunity, allergy, cancer, and atherosclerosis. Copyright © 2017 by The American Association of Immunologists, Inc.