InVivoMAb anti-mouse OX40 (CD134)

Catalog #BE0031
Product Citations:
38
Clone:
OX-86
Reactivities:
Mouse

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The OX-86 monoclonal antibody reacts with mouse OX-40 also known as CD134. OX-40 is a 50 kDa type I membrane glycoprotein and a member of the TNF receptor superfamily. OX-40 is expressed on activated CD4 and CD8 T cells, but is not found on resting naĆÆve T cells or most resting memory T cells. Although it was originally thought that OX-40 expression was restricted to activated conventional T cells, it has now been visualized on activated regulatory T cells, NKT cells, NK cells, and neutrophils. OX-40 plays a major role in regulating both CD4 and CD8 T cell clonal expansion. It provides a costimulatory signal to an antigen-reacting naive T cells to prolong proliferation, as well as augment the production of several cytokines. This is demonstrated by OX-40 knockout mice which generate fewer primary effector CD4 T cells after immunization. Furthermore, in vivo treatment with an agonist antibody to OX-40 has been shown to strongly enhance the generation of antigen-specific effector T cells and prevent the induction of T cell tolerance. The OX-86 antibody is an agonistic antibody that has been shown to delay tumor growth in vivo.

Specifications

Isotype Rat IgG1,Ā Īŗ
Recommended Isotype Control(s) InVivoMAb rat IgG1 isotype control, anti-horseradish peroxidase
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen Recombinant mouse OX40-CD4 chimeric protein
Reported Applications in vivo OX40 activation
in vitro OX40 activation
Western blot
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/Ī¼g)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 Āµm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_1107592
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4Ā°C. Do not freeze.

Additional Formats

in vivo OX40 activation
Zander, R. A., et al. (2015). "PD-1 Co-inhibitory and OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Differentiation and Anti-Plasmodium Humoral Immunity" Cell Host Microbe 17(5): 628-641. PubMed

The differentiation and protective capacity of Plasmodium-specific T cells are regulated by both positive and negative signals during malaria, but the molecular and cellular details remain poorly defined. Here we show that malaria patients and Plasmodium-infected rodents exhibit atypical expression of the co-stimulatory receptor OX40 on CD4 T cells and that therapeutic enhancement of OX40 signaling enhances helper CD4 T cell activity, humoral immunity, and parasite clearance in rodents. However, these beneficial effects of OX40 signaling are abrogated following coordinate blockade of PD-1 co-inhibitory pathways, which are also upregulated during malaria and associated with elevated parasitemia. Co-administration of biologics blocking PD-1 and promoting OX40 signaling induces excessive interferon-gamma that directly limits helper T cell-mediated support of humoral immunity and decreases parasite control. Our results show that targeting OX40 can enhance Plasmodium control and that crosstalk between co-inhibitory and co-stimulatory pathways in pathogen-specific CD4 T cells can impact pathogen clearance.

in vivo OX40 activation
Makkouk, A., et al. (2015). "Three steps to breaking immune tolerance to lymphoma: a microparticle approach" Cancer Immunol Res 3(4): 389-398. PubMed

In situ immunization aims at generating antitumor immune responses through manipulating the tumor microenvironment. On the basis of recent advances in the understanding of antitumor immunity, we designed a three-step approach to in situ immunization to lymphoma: (i) inducing immunogenic tumor cell death with the chemotherapeutic drug doxorubicin. Doxorubicin enhances the expression of ā€œeat-meā€ signals by dying tumor cells, facilitating their phagocytosis by dendritic cells (DC). Because of the vesicant activity of doxorubicin, microparticles made of biodegradable polymer poly(lactide-co-glycolide) or PLGA can safely deliver doxorubicin intratumorally and are effective vaccine adjuvants, (ii) enhancing T-cell activation using anti-OX40 and (iii) sustaining T-cell responses by checkpoint blockade using anti-CTLA-4. In vitro, doxorubicin microparticles were less cytotoxic to DCs than to B lymphoma cells, did not require internalization by tumor cells, and significantly enhanced phagocytosis of tumor cells by DCs as compared with soluble doxorubicin. In mice, this three-step therapy induced CD4- and CD8-dependent systemic immune responses that enhanced T-cell infiltration into distant tumors, leading to their eradication and significantly improving survival. Our findings demonstrate that systemic antitumor immune responses can be generated locally by three-step therapy and merit further investigation as an immunotherapy for patients with lymphoma.

in vivo OX40 activation
Bartkowiak, T., et al. (2015). "Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine" Proc Natl Acad Sci U S A 112(38): E5290-5299. PubMed

Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15-19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV(+) TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and alpha4-1BB promoted the highest CD8(+) versus regulatory FoxP3(+) T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies.

in vivo OX40 activation
Krupnick, A. S., et al. (2014). "Central memory CD8+ T lymphocytes mediate lung allograft acceptance" J Clin Invest 124(3): 1130-1143. PubMed

Memory T lymphocytes are commonly viewed as a major barrier for long-term survival of organ allografts and are thought to accelerate rejection responses due to their rapid infiltration into allografts, low threshold for activation, and ability to produce inflammatory mediators. Because memory T cells are usually associated with rejection, preclinical protocols have been developed to target this population in transplant recipients. Here, using a murine model, we found that costimulatory blockade-mediated lung allograft acceptance depended on the rapid infiltration of the graft by central memory CD8+ T cells (CD44(hi)CD62L(hi)CCR7+). Chemokine receptor signaling and alloantigen recognition were required for trafficking of these memory T cells to lung allografts. Intravital 2-photon imaging revealed that CCR7 expression on CD8+ T cells was critical for formation of stable synapses with antigen-presenting cells, resulting in IFN-gamma production, which induced NO and downregulated alloimmune responses. Thus, we describe a critical role for CD8+ central memory T cells in lung allograft acceptance and highlight the need for tailored approaches for tolerance induction in the lung.

in vivo OX40 activation
Redmond, W. L., et al. (2014). "Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity" Cancer Immunol Res 2(2): 142-153. PubMed

Ligation of the TNF receptor family costimulatory molecule OX40 (CD134) with an agonist anti-OX40 monoclonal antibody (mAb) enhances antitumor immunity by augmenting T-cell differentiation as well as turning off the suppressive activity of the FoxP3(+)CD4(+) regulatory T cells (Treg). In addition, antibody-mediated blockade of the checkpoint inhibitor CTLA-4 releases the ā€œbrakesā€ on T cells to augment tumor immunotherapy. However, monotherapy with these agents has limited therapeutic benefit particularly against poorly immunogenic murine tumors. Therefore, we examined whether the administration of agonist anti-OX40 therapy in the presence of CTLA-4 blockade would enhance tumor immunotherapy. Combined anti-OX40/anti-CTLA-4 immunotherapy significantly enhanced tumor regression and the survival of tumor-bearing hosts in a CD4 and CD8 T cell-dependent manner. Mechanistic studies revealed that the combination immunotherapy directed the expansion of effector T-bet(high)/Eomes(high) granzyme B(+) CD8 T cells. Dual immunotherapy also induced distinct populations of Th1 [interleukin (IL)-2, IFN-gamma], and, surprisingly, Th2 (IL-4, IL-5, and IL-13) CD4 T cells exhibiting increased T-bet and Gata-3 expression. Furthermore, IL-4 blockade inhibited the Th2 response, while maintaining the Th1 CD4 and effector CD8 T cells that enhanced tumor-free survival. These data demonstrate that refining the global T-cell response during combination immunotherapy can further enhance the therapeutic efficacy of these agents.

in vivo OX40 activation
Guo, Z., et al. (2014). "PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer" PLoS One 9(2): e89350. PubMed

The co-inhibitory receptor Programmed Death-1 (PD-1) curtails immune responses and prevent autoimmunity, however, tumors exploit this pathway to escape from immune destruction. The co-stimulatory receptor OX40 is upregulated on T cells following activation and increases their clonal expansion, survival and cytokine production when engaged. Although antagonistic anti-PD-1 or agonistic anti-OX40 antibodies can promote the rejection of several murine tumors, some poorly immunogenic tumors were refractory to this treatment. In the present study, we evaluated the antitumor effects and mechanisms of combinatorial PD-1 blockade and OX40 triggering in a murine ID8 ovarian cancer model. Although individual anti-PD-1 or OX40 mAb treatment was ineffective in tumor protection against 10-day established ID8 tumor, combined anti-PD-1/OX40 mAb treatment markedly inhibited tumor outgrowth with 60% of mice tumor free 90 days after tumor inoculation. Tumor protection was associated with a systemic immune response with memory and antigen specificity and required CD4(+) cells and CD8(+) T cells. The anti-PD-1/OX40 mAb treatment increased CD4(+) and CD8(+) cells and decreased immunosuppressive CD4(+)FoxP3(+) regulatory T (Treg) cells and CD11b(+)Gr-1(+) myeloid suppressor cells (MDSC), giving rise to significantly higher ratios of both effector CD4(+) and CD8(+) cells to Treg and MDSC in peritoneal cavity; Quantitative RT-PCR data further demonstrated the induction of a local immunostimulatory milieu by anti-PD-1/OX40 mAb treatment. The splenic CD8(+) T cells from combined mAb treated mice produced high levels of IFN-gamma upon tumor antigen stimulation and exhibited antigen-specific cytolytic activity. To our knowledge, this is the first study testing the antitumor effects of combined anti-PD-1/OX40 mAb in a murine ovarian cancer model, and our results provide a rationale for clinical trials evaluating ovarian cancer immunotherapy using this combination of mAb.

in vitro OX40 activation
Hu, Z., et al. (2013). "Regulatory CD8+ T cells associated with erosion of immune surveillance in persistent virus infection suppress in vitro and have a reversible proliferative defect" J Immunol 191(1): 312-322. PubMed

CD4(+) T cell help is critical for CD8(+) T cell memory and immune surveillance against persistent virus infections. Our recent data have showed the lack of CD4(+) T cells leads to the generation of an IL-10-producing CD8(+) T cell population during persistent murine gamma-herpesvirus-68 (MHV-68) infection. IL-10 from these cells is partly responsible for erosion in immune surveillance, leading to spontaneous virus reactivation in lungs. In this study, we further characterized the generation, phenotype, and function of these IL-10-producing CD8(+) T cells by comparing with a newly identified IL-10-producing CD8(+) T cell population present during the acute stage of the infection. The IL-10-producing CD8(+) populations in acute and chronic stages differed in their requirement for CD4(+) T cell help, the dependence on IL-2/CD25 and CD40-CD40L pathways, and the ability to proliferate in vitro in response to anti-CD3 stimulation. IL-10-producing CD8(+) T cells in the chronic stage showed a distinct immunophenotypic profile, sharing partial overlap with the markers of previously reported regulatory CD8(+) T cells, and suppressed the proliferation of naive CD8(+) T cells. Notably, they retained the ability to produce effector cytokines and cytotoxic activity. In addition, the proliferative defect of the cells could be restored by addition of exogenous IL-2 or blockade of IL-10. These data suggest that the IL-10-producing CD8(+) T cells arising in chronic MHV-68 infection in the absence of CD4(+) T cell help belong to a subset of CD8(+) regulatory T cells.

in vivo OX40 activation
Xiao, X., et al. (2012). "New insights on OX40 in the control of T cell immunity and immune tolerance in vivo" J Immunol 188(2): 892-901. PubMed

OX40 is a T cell costimulatory molecule that belongs to the TNFR superfamily. In the absence of immune activation, OX40 is selectively expressed by Foxp3(+) regulatory T cells (Tregs), but not by resting conventional T cells. The exact role of OX40 in Treg homeostasis and function remains incompletely defined. In this study, we demonstrate that OX40 engagement in vivo in naive mice induces initial expansion of Foxp3(+) Tregs, but the expanded Tregs have poor suppressive function and exhibit features of exhaustion. We also show that OX40 enables the activation of the Akt and Stat5 pathways in Tregs, resulting in transient proliferation of Tregs and reduced levels of Foxp3 expression. This creates a state of relative IL-2 deficiency in naive mice that further impacts Tregs. This exhausted Treg phenotype can be prevented by exogenous IL-2, as both OX40 and IL-2 agonists drive further expansion of Tregs in vivo. Importantly, Tregs expanded by both OX40 and IL-2 agonists are potent suppressor cells, and in a heart transplant model, they promote long-term allograft survival. Our data reveal a novel role for OX40 in promoting immune tolerance and may have important clinical implications.

in vivo OX40 activation
Kurche, J. S., et al. (2012). "Type I IFN-dependent T cell activation is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression" J Immunol 188(2): 585-593. PubMed

Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNalphaR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNalphaR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.

in vivo OX40 activation
Murray, S. E., et al. (2011). "NF-kappaB-inducing kinase plays an essential T cell-intrinsic role in graft-versus-host disease and lethal autoimmunity in mice" J Clin Invest 121(12): 4775-4786. PubMed

NF-kappaB-inducing kinase (NIK) is an essential upstream kinase in noncanonical NF-kappaB signaling. NIK-dependent NF-kappaB activation downstream of several TNF receptor family members mediates lymphoid organ development and B cell homeostasis. Peripheral T cell populations are normal in the absence of NIK, but the role of NIK during in vivo T cell responses to antigen has been obscured by other developmental defects in NIK-deficient mice. Here, we have identified a T cell-intrinsic requirement for NIK in graft-versus-host disease (GVHD), wherein NIK-deficient mouse T cells transferred into MHC class II mismatched recipients failed to cause GVHD. Although NIK was not necessary for antigen receptor signaling, it was absolutely required for costimulation through the TNF receptor family member OX40 (also known as CD134). When we conditionally overexpressed NIK in T cells, mice suffered rapid and fatal autoimmunity characterized by hyperactive effector T cells and poorly suppressive Foxp3(+) Tregs. Together, these data illuminate a critical T cell-intrinsic role for NIK during immune responses and suggest that its tight regulation is critical for avoiding autoimmunity.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy.

    In Nature Communications on 19 December 2023 by Gress, A. R., Ronayne, C. E., et al.

    PubMed

    After Mycobacterium tuberculosis (Mtb) infection, many effector T cells traffic to the lungs, but few become activated. Here we use an antigen receptor reporter mouse (Nur77-GFP) to identify recently activated CD4 T cells in the lungs. These Nur77-GFPHI cells contain expanded TCR clonotypes, have elevated expression of co-stimulatory genes such as Tnfrsf4/OX40, and are functionally more protective than Nur77-GFPLO cells. By contrast, Nur77-GFPLO cells express markers of terminal exhaustion and cytotoxicity, and the trafficking receptor S1pr5, associated with vascular localization. A short course of immunotherapy targeting OX40+ cells transiently expands CD4 T cell numbers and shifts their phenotype towards parenchymal protective cells. Moreover, OX40 agonist immunotherapy decreases the lung bacterial burden and extends host survival, offering an additive benefit to antibiotics. CD4 T cells from the cerebrospinal fluid of humans with HIV-associated tuberculous meningitis commonly express surface OX40 protein, while CD8 T cells do not. Our data thus propose OX40 as a marker of recently activated CD4 T cells at the infection site and a potential target for immunotherapy in tuberculosis. Ā© 2023. The Author(s).

    • Cancer Research
    • ,
    • Cardiovascular biology
    • ,
    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Fasting mimicking diet in mice delays cancer growth and reduces immunotherapy-associated cardiovascular and systemic side effects.

    In Nature Communications on 8 September 2023 by Cortellino, S., Quagliariello, V., et al.

    PubMed

    Immune checkpoint inhibitors cause side effects ranging from autoimmune endocrine disorders to severe cardiotoxicity. Periodic Fasting mimicking diet (FMD) cycles are emerging as promising enhancers of a wide range of cancer therapies including immunotherapy. Here, either FMD cycles alone or in combination with anti-OX40/anti-PD-L1 are much more effective than immune checkpoint inhibitors alone in delaying melanoma growth in mice. FMD cycles in combination with anti-OX40/anti-PD-L1 also show a trend for increased effects against a lung cancer model. As importantly, the cardiac fibrosis, necrosis and hypertrophy caused by immune checkpoint inhibitors are prevented/reversed by FMD treatment in both cancer models whereas immune infiltration of CD3+ and CD8+ cells in myocardial tissues and systemic and myocardial markers of oxidative stress and inflammationĀ are reduced. These results indicate that FMD cycles in combination with immunotherapy can delay cancer growth while reducing side effects including cardiotoxicity. Ā© 2023. Springer Nature Limited.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Curcumin Enhances the Abscopal Effect in Mice with Colorectal Cancer by Acting as an Immunomodulator.

    In Pharmaceutics on 17 May 2023 by Shih, K. C., Chan, H. W., et al.

    PubMed

    Radiotherapy (RT) is an effective cancer treatment. The abscopal effect, referring to the unexpected shrinkage observed in non-irradiated tumors after radiation therapy, is thought to be mediated by systemic immune activation. However, it has low incidence and is unpredictable. Here, RT was combined with curcumin to investigate how curcumin affects RT-induced abscopal effects in mice with bilateral CT26 colorectal tumors. Indium 111-labeled DOTA-anti-OX40 mAb was synthesized to detect the activated T cell accumulations in primary and secondary tumors correlating with the changes in protein expressions and tumor growth to understand the overall effects of the combination of RT and curcumin. The combination treatment caused the most significant tumor suppression in both primary and secondary tumors, accompanied by the highest 111In-DOTA-OX40 mAb tumor accumulations. The combination treatment elevated expressions of proapoptotic proteins (Bax and cleaved caspase-3) and proinflammatory proteins (granzyme B, IL-6, and IL-1Ī²) in both primary and secondary tumors. Based on the biodistribution of 111In-DOTA-OX40 mAb, tumor growth inhibition, and anti-tumor protein expression, our findings suggest that curcumin could act as an immune booster to augment RT-induced anti-tumor and abscopal effects effectively.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses.

    In Journal for Immunotherapy of Cancer on 1 May 2023 by Kumar, A., Ramani, V., et al.

    PubMed

    Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are a mainstay treatment for hormone receptor-positive breast cancer. While their principal mechanism is inhibition of cancer cell proliferation, preclinical and clinical evidence suggests that CDK4/6i can also promote antitumor T-cell responses. However, this pro-immunogenic property is yet to be successfully harnessed in the clinic, as combining CDK4/6i with immune checkpoint blockade (ICB) has not shown a definitive benefit in patients. We performed an in-depth analysis of the changes in the tumor immune microenvironment and systemic immune modulation associated with CDK4/6i treatment in muring breast cancer models and in patients with breast cancer using high dimensional flow cytometry and RNA sequencing. Gain and loss of function in vivo experiments employing cell transfer and depletion antibody were performed to uncover immune cell populations critical for CDK4/6i-mediated stimulation of antitumor immunity. We found that loss of dendritic cells (DCs) within the tumor microenvironment resulting from CDK4/6 inhibition in bone marrow progenitors is a major factor limiting antitumor immunity after CDK4/6i and ICB. Consequently, restoration of DC compartment by adoptively transferring ex vivo differentiated DCs to mice treated with CDK4/6i and ICB therapy enabled robust tumor inhibition. Mechanistically, the addition of DCs promoted the induction of tumor-localized and systemic CD4 T-cell responses in mice receiving CDK4/6i-ICB-DC combination therapy, as characterized by enrichment of programmed cell death protein-1-negative T helper (Th)1 and Th2 cells with an activated phenotype. CD4 T-cell depletion abrogated the antitumor benefit of CDK4/6i-ICB-DC combination, with outgrowing tumors displaying an increased proportion of terminally exhausted CD8 T cells. Our findings suggest that CDK4/6i-mediated DC suppression limits CD4 T-cell responses essential for the sustained activity of CD8 T cells and tumor inhibition. Furthermore, they imply that restoring DC-CD4 T-cell crosstalk via DC transfer enables effective breast cancer immunity in response to CDK4/6i and ICB treatment. Ā© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Multiagent Intratumoral Immunotherapy Can Be Effective in A20 Lymphoma Clearance and Generation of Systemic T Cell Immunity.

    In Cancers on 24 March 2023 by Gilman, K. E., Matiatos, A. P., et al.

    PubMed

    The use of immunotherapies has shown promise against selective human cancers. Identifying novel combinations of innate and adaptive immune cell-activating agents that can work synergistically to suppress tumor growth and provide additional protection against resistance or recurrence is critical. The A20 murine lymphoma model was used to evaluate the effect of various combination immunotherapies administered intratumorally. We show that single-modality treatment with Poly(I:C) or GM-CSF-secreting allogeneic cells only modestly controls tumor growth, whereas when given together there is an improved benefit, with 50% of animals clearing tumors and surviving long-term. Neither heat nor irradiation of GM-CSF-secreting cells enhanced the response over use of live cells. The use of a TIM-3 inhibitory antibody and an OX40 agonist in combination with Poly(I:C) allowed for improved tumor control, with 90% of animals clearing tumors with or without a combination of GM-CSF-secreting cells. Across all treatment groups, mice rejecting their primary A20 tumors were immune to subsequent challenge with A20, and this longstanding immunity was T-cell dependent. The results herein support the use of combinations of innate and adaptive immune activating agents for immunotherapy against lymphoma and should be investigated in other cancer types.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer.

    In Nature Cancer on 1 January 2023 by Gulhati, P., Schalck, A., et al.

    PubMed

    Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease. Ā© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

    • Cancer Research
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    Potent and Targeted Sindbis Virus Platform for Immunotherapy of Ovarian Cancer.

    In Cells on 24 December 2022 by Opp, S., Hurtado, A., et al.

    PubMed

    Our laboratory has been developing a Sindbis viral (SV) vector platform for treatments of ovarian and other types of cancers. In this study we show that SV.IL-12 combined with an agonistic OX40 antibody can eliminate ovarian cancer in a Mouse Ovarian Surface Epithelial Cell Line (MOSEC) model and further prevent tumors in mice rechallenged with tumor cells after approximately 5 months. Treatment efficacy is shown to be dependent upon T-cells that are transcriptionally and metabolically reprogramed. An influx of immune cells to the tumor microenvironment occurs. Combination of sequences encoding both IL-12 and anti-OX40 into a single SV vector, SV.IgGOX40.IL-12, facilitates the local delivery of immunoregulatory agents to tumors enhancing the anti-tumor response. We promote SV.IgGOX40.IL-12 as a safe and effective therapy for multiple types of cancer.

    • In Vivo
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mass Spec
    • ,
    • Mus musculus (House mouse)
    Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade.

    In Cancer Discovery on 2 December 2022 by Krisnawan, V. E., Belle, J. I., et al.

    PubMed

    The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711. Ā©2022 American Association for Cancer Research.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer.

    In Nature Communications on 27 June 2022 by Lee, J. V., Housley, F., et al.

    PubMed

    Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors. Ā© 2022. The Author(s).

    • Genetics
    • ,
    • Immunology and Microbiology
    Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape.

    In Nature Communications on 20 June 2022 by Karginov, T. A., Menoret, A., et al.

    PubMed

    Boosting T cell activation through costimulation directs defense against cancer and viral infections. Despite multiple studies targeting costimulation in clinical trials, the increased potency and reprogramming of T cells endowed by costimulation is poorly understood. Canonical dogma states that transcription mediates T cell activation. Here, we show that the spliceosome, controlling post-transcriptional alternative splicing and alternative polyadenylation, is the most enriched pathway in T cells after CD134/CD137 costimulation. Costimulation of CD8+ T cells significantly increases expression of 29 RNA-binding proteins while RNA-seq uncovers over 1000 differential alternative splicing and polyadenylation events. Using in vivo mouse and in vitro human models, we demonstrate that RNA-binding protein Tardbp is required for effector cytokine production, CD8+ T cell clonal expansion, and isoform regulation after costimulation. The prospect of immune response optimization through reprogramming of mRNA isoform production offered herein opens new avenues for experimentally and therapeutically tuning the activities of T cells. Ā© 2022. The Author(s).

    • Immunology and Microbiology
    Evaluating the glycolytic potential of mouse costimulated effector CD8+ TĀ cells ex vivo.

    In STAR Protocols on 17 June 2022 by Agliano, F., Menoret, A., et al.

    PubMed

    Studying the metabolic fitness of TĀ cells is fundamental to understand how immune responses are regulated. Here, we describe a step-by-step protocol optimized to efficiently generate and isolate effector antigen-specific CD8+ TĀ cells ex vivo using costimulation. We also detail steps to evaluate their metabolic activity using Seahorse technology. This protocol can be used to measure the glycolytic potential of effector murine TĀ cells in response to different manipulations, such as infections, adjuvant studies, gene editing, or metabolite supplementation. For complete details on the use and execution of this protocol, please refer to Agliano etĀ al. (2022). Ā© 2022 The Author(s).

    • Cancer Research
    • ,
    • Mus musculus (House mouse)
    Combination of OX40 Co-Stimulation, Radiotherapy, and PD-1 Inhibition in a Syngeneic Murine Triple-Negative Breast Cancer Model.

    In Cancers on 29 May 2022 by Han, M. G., Wee, C. W., et al.

    PubMed

    Immune checkpoint inhibitors have been successful in a wide range of tumor types but still have limited efficacy in immunologically cold tumors, such as breast cancers. We hypothesized that the combination of agonistic anti-OX40 (Ī±-OX40) co-stimulation, PD-1 blockade, and radiotherapy would improve the therapeutic efficacy of the immune checkpoint blockade in a syngeneic murine triple-negative breast cancer model. Murine triple-negative breast cancer cells (4T1) were grown in immune-competent BALB/c mice, and tumors were irradiated with 24 Gy in three fractions. PD-1 blockade and Ī±-OX40 were administered five times every other day. Flow cytometric analyses and immunohistochemistry were used to monitor subsequent changes in the immune cell repertoire. The combination of Ī±-OX40, radiotherapy, and PD-1 blockade significantly improved primary tumor control, abscopal effects, and long-term survival beyond 2 months (60%). In the tumor microenvironment, the ratio of CD8+ T cells to CD4 + FOXP3+ regulatory T cells was significantly elevated and exhausted CD8+ T cells (PD-1+, CTLA-4+, TIM-3+, or LAG-3+ cells) were significantly reduced in the triple combination group. Systemically, Ī±-OX40 co-stimulation and radiation significantly increased the CD103+ dendritic cell response in the spleen and plasma IFN-Ī³, respectively. Together, our results suggest that the combination of Ī±-OX40 co-stimulation and radiation is a viable approach to overcome therapeutic resistance to PD-1 blockade in immunologically cold tumors, such as triple-negative breast cancer.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Early clonal expansion of tumor-infiltrating lymphocytes predicts response to immune checkpoint therapy

    Preprint on Research Square on 20 May 2022 by Kidman, J., Zemek, R., et al.

    PubMed

    Immune checkpoint therapy (ICT) causes durable tumor responses in a subgroup of patients. Profiling T cell receptor beta (TCRĪ²) repertoire structure in ICT responders and non-responders provides mechanistic insight into what constitutes an effective anti-tumor response, and could result in the development of predictive biomarkers of response to identify and stratify patients for ICT. To examine how the TCRĪ² repertoire dynamics contribute to ICT response, we utilized an established murine model that excludes variation in host genetics, environmental factors and tumor mutation burden, limiting variation between animals to naturally diverse TCRĪ² repertoires. Oligoclonal expansion of TCRĪ² clonotypes that corresponded with a low TCRĪ² diversity was observed in responding tumors prior to ICT. We modeled TCRĪ² cluster dynamics during ICT and found that select clonotypes expanded slower in responders compared to non- responders. Clonally expanded CD8+ tumor infiltrating T cells in non-responders exhibited a T cell exhaustion phenotype. We conclude that an early burst of clonal expansion followed by a contraction during ICT is associated with response.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Therapeutic targeting miR130b counteracts diffuse large B-cell lymphoma progression via OX40/OX40L-mediated interaction with Th17 cells.

    In Signal Transduction and Targeted Therapy on 18 March 2022 by Sun, R., Zhang, P. P., et al.

    PubMed

    MicroRNAs (miRNAs) are involved in lymphoma progression by regulating the tumor microenvironment. Serum miR130b is overexpressed in diffuse large B-cell lymphoma (DLBCL), inducing Th17 cell alterations. To further illustrate its biological significance and therapeutic rationale, miR130b was detected by quantitative real-time PCR in the serum samples of 532 newly diagnosed DLBCL patients. The mechanism of miR130b on lymphoma progression and the tumor microenvironment was investigated both in vitro and in vivo. Therapeutic targeting miR130b was also evaluated, including OX40 agonistic antibody and lipid nanoparticles (LNPs)-miR130b antagomir. The results showed that serum miR130b significantly correlated with tumor miR130b and serum interleukin-17, indicating lymphoma relapse and inferior survival of DLBCL patients. MiR130b overexpression altered tumor microenvironment signaling pathways and increased Th17 cell activity. As mechanism of action, miR130b downregulated tumor OX40L expression by directly targeting IFNAR1/p-STAT1 axis, recruiting Th17 cells via OX40/OX40L interaction, thereby promoting immunosuppressive function of Th17 cells. In co-culture systems of B-lymphoma cells with immune cells, miR130b inhibited lymphoma cell autophagy, which could be counteracted by OX40 agonistic antibody and LNPs-miR130b antagomir. In murine xenograft model established with subcutaneous injection of A20 cells, both OX40 agonistic antibody and LNPs-miR130b antagomir remarkably inhibited Th17 cells and retarded miR130b-overexpressing tumor growth. In conclusion, as an oncogenic biomarker of DLBCL, miR130b was related to lymphoma progression through modulating OX40/OX40L-mediated lymphoma cell interaction with Th17 cells, attributing to B-cell lymphoma sensitivity towards OX40 agonistic antibody. Targeting miR130b using LNPs-miR130b antagomir could also be a potential immunotherapeutic strategy in treating OX40-altered lymphoid malignancies. Ā© 2022. The Author(s).

    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Nicotinamide breaks effector CD8 TĀ cell responses by targeting mTOR signaling.

    In IScience on 18 March 2022 by Agliano, F., Karginov, T. A., et al.

    PubMed

    Nicotinamide (NAM) shapes TĀ cell responses but its precise molecular mechanism of action remains elusive. Here, we show that NAM impairs naive TĀ cell effector transition but also effector TĀ cells themselves. Although aerobic glycolysis is a hallmark of activated TĀ cells, CD8+ TĀ cells exposed to NAM displayed enhanced glycolysis, yet producing significantly less IFNĪ³. Mechanistically, NAM reduced mTORC1 activity independently of NAD+ metabolism, decreasing IFNĪ³ translation and regulating TĀ cell transcriptional factors critical to effector/memory fate. Finally, the role of NAM in a biomedically relevant model of lung injury was tested. Specifically, a NAM-supplemented diet reduced systemic IL-2, antigen-specific TĀ cell clonal expansion, and effector function after inhalation of Staphylococcus aureus enterotoxin A. These findings identify NAM as a potential therapeutic supplement that uncouples glycolysis from effector cytokine production and may be a powerful treatment for diseases associated with TĀ cell hyperactivation.Ā© 2022 The Author(s).

    • Cancer Research
    • ,
    • Genetics
    • ,
    • Immunology and Microbiology
    Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy.

    In Nature Communications on 14 December 2021 by Li, W., Zhang, X., et al.

    PubMed

    Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy. Ā© 2021. The Author(s).

    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Stem Cells and Developmental Biology
    Tnfrsf4-expressing regulatory T cells promote immune escape of chronic myeloid leukemia stem cells.

    In JCI Insight on 8 December 2021 by Hinterbrandner, M., Rubino, V., et al.

    PubMed

    Leukemia stem cells (LSCs) promote the disease and seem resistant to therapy and immune control. Why LSCs are selectively resistant against elimination by CD8+ cytotoxic T cells (CTLs) is still unknown. In this study, we demonstrate that LSCs in chronic myeloid leukemia (CML) can be recognized and killed by CD8+ CTLs in vitro. However, Tregs, which preferentially localized close to CD8+ CTLs in CML BM, protected LSCs from MHC class I-dependent CD8+ CTL-mediated elimination in vivo. BM Tregs in CML were characterized by the selective expression of tumor necrosis factor receptor 4 (Tnfrsf4). Stimulation of Tnfrsf4 signaling did not deplete Tregs but reduced the capacity of Tregs to protect LSCs from CD8+ CTL-mediated killing. In the BM of newly diagnosed CML patients, TNFRSF4 mRNA levels were significantly increased and correlated with the expression of the Treg-restricted transcription factor FOXP3. Overall, these results identify Tregs as key regulators of immune escape of LSCs and TNFRSF4 as a potential target to reduce the function of Tregs and boost antileukemic immunity in CML.

    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Tumor eradicated by combination of imiquimod and OX40 agonist for in situ vaccination.

    In Cancer Science on 1 November 2021 by Chu, Y., Li, R., et al.

    PubMed

    Various cancer vaccines have been developed to generate and amplify antigen-specific T cell responses against malignancy. Among them, in situ vaccination is one of the most practical types as it can trigger immune responses without previous antigen identification. Here we reported a novel in situ vaccine by intratumoral injection of imiquimod and OX40 agonist. In mice bearing hepatic carcinoma, both the injected tumor and the noninjected tumor in the distant lesion of the same mice were suppressed after vaccination. Further studies found that this in situ vaccine triggered systemic tumor-specific responses, with one-fold increase of effector memory T cells properties and stronger toxicity of lymphocytes in spleen. Besides, we found that imiquimod upregulated the expression of OX40 on CD4+ T cells and thus enhanced the effectiveness of OX40 agonist. Five immune-positive-related pathways were activated after vaccination. This in situ vaccine caused little harm to normal organs and provided long-term protection against the same syngeneic tumor rechallenge. Due to its effectiveness, feasibility and safety, this strategy could potentially be applied to various types of late-stage solid tumors and worthy of further clinical research. Ā© 2021 The Authors. Cancer Science published by John Wiley Sons Australia, Ltd on behalf of Japanese Cancer Association.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Cancer Research
    Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells.

    In Nature Biomedical Engineering on 1 November 2021 by Xue, G., Wang, Z., et al.

    PubMed

    Antigen release resulting from the death of tumour cells induced by chemotherapies and targeted therapies can augment the antitumour responses induced by immune checkpoint blockade (ICB). However, tumours responding to ICB therapies often become resistant to them. Here we show that the specific targeting of tumour cells promotes the growth of tumour-cell variants that are resistant to ICB, and that the acquired resistance can be overcome via the concurrent depletion of tumour cells and of major types of immunosuppressive cell via a monoclonal antibody binding the enzyme CD73, which we identified as highly expressed on tumour cells and on regulatory T cells, myeloid-derived suppressor cells and tumour-associated macrophages, but not on cytolytic T lymphocytes, natural killer cells and dendritic cells. In mice with murine tumours, the systemic administration of anti-PD1 antibodies and anti-CD73 antibodies conjugated to a near-infrared dye prevented near-infrared-irradiated tumours from acquiring resistance to ICB and resulted in the eradication of advanced tumours. The elimination of immunosuppressive cells may overcome acquired resistance to ICB across a range of tumour types and combination therapies. Ā© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

    • Immunology and Microbiology
    OX40-targeted immune agonist antibodies induce potent antitumor immune responses without inducing liver damage in mice.

    In FASEB BioAdvances on 1 October 2021 by Tee, Y. C., Blake, S. J., et al.

    PubMed

    Despite promising preclinical and clinical data demonstrating that immune agonist antibody immunotherapies (IAAs) such as Ī±OX40 induce strong antitumor immune responses, clinical translation has been significantly hampered by the propensity of some IAAs to induce dose-limiting and sometimes life-threatening immunotoxicities such as cytokine release syndrome and hepatotoxicity. For example, in a recent study Ī±OX40 was shown to induce significant liver damage in mice by inducing the pyroptosis of liver natural killer T cells (NKT) cells. Surprisingly; however, given these previous reports, Ī±OX40 treatment in our hands did not induce NKT cell pyroptosis or liver damage. We investigated numerous potential confounding factors including age, sex, tumor burden, dosing strategy, and the gut microbiota, which could have explained this discrepancy with the previous study. In none of these experiments did we find that Ī±OX40 induced any more than very mild inflammation in the liver. Our study therefore suggests that, preclinically, Ī±OX40 is a safe and effective immunotherapy and further studies into the clinical benefit of Ī±OX40 are warranted. Ā© 2021 The Authors. FASEB BioAdvances published by Wiley Periodicals LLC on behalf of The Federation of American Societies for Experimental Biology.

1 2