InVivoMAb anti-mouse IL-7Rα (CD127)

Catalog #BE0065
Product Citations:
20
Clone:
A7R34
Reactivities:
Mouse

$172.00 - $4,494.00

$172.00 - $4,494.00

Choose an Option...
  • 100 mg - $4,494.00
  • 50 mg - $3,175.00
  • 25 mg - $2,109.00
  • 5 mg - $630.00
  • 1 mg - $172.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The A7R34 monoclonal antibody reacts with mouse IL-7Rα also known as CD127. IL-7Rα is a 60-90 kDa type I transmembrane glycoprotein expressed on immature B cells, thymocytes, peripheral T cells, and bone marrow stromal cells. IL-7Rα forms a heterodimer with the common γ chain (γc or CD132) and upon ligation of IL-7 plays important roles in T and B cell development, and T cell homeostasis. Thymic Stromal Lymphopoietin (TSLP) also binds to IL-7Rα as a complex with the TSLPR chain to trigger activation of dendritic cells, and is also involved in B cell development, allergy and autoimmunity. The A7R34 antibody has been shown to block IL-7Rα signaling when administered in vivo.

Specifications

Isotype Rat IgG2a, κ
Recommended Isotype Control(s) InVivoMAb rat IgG2a isotype control, anti-trinitrophenol
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen IL-7Rα-IgG1 fusion protein
Reported Applications in vivo blocking of IL-7Rα signaling
Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/μg)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_1107590
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
in vivo blocking of IL-7Rα signaling
Torow, N., et al. (2015). "Active suppression of intestinal CD4(+)TCRalphabeta(+) T-lymphocyte maturation during the postnatal period" Nat Commun 6: 7725. PubMed

Priming of the mucosal immune system during the postnatal period substantially influences host-microbial interaction and susceptibility to immune-mediated diseases in adult life. The underlying mechanisms are ill defined. Here we show that shortly after birth, CD4 T cells populate preformed lymphoid structures in the small intestine and quickly acquire a distinct transcriptional profile. T-cell recruitment is independent of microbial colonization and innate or adaptive immune stimulation but requires beta7 integrin expression. Surprisingly, neonatal CD4 T cells remain immature throughout the postnatal period under homeostatic conditions but undergo maturation and gain effector function on barrier disruption. Maternal SIgA and regulatory T cells act in concert to prevent immune stimulation and maintain the immature phenotype of CD4 T cells in the postnatal intestine during homeostasis. Active suppression of CD4 T-cell maturation during the postnatal period might contribute to prevent auto-reactivity, sustain a broad TCR repertoire and establish life-long immune homeostasis.

Flow Cytometry
Becker, A. M., et al. (2015). "ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors" Exp Hematol 43(1): 44-52 e41-43. PubMed

All-lymphoid progenitors (ALPs) yield few myeloid cells in vivo, but readily generate such cells in vitro. The basis for this difference remains unknown. We hypothesized that ALPs limit responsiveness to in vivo concentrations of myeloid-promoting cytokines by reducing expression of the corresponding receptors, potentially through posttranscriptional mechanisms. Consistent with such a mechanism, ALPs express higher levels of CSF1R transcripts than their upstream precursors, yet show limited cell-surface protein expression of colony-stimulating factor 1 receptor (CSF1R). All-lymphoid progenitors and other hematopoietic progenitors deficient in A disintegrin and metalloproteinase domain 17 (ADAM17), display elevated cell surface CSF1R expression. ADAM17(-/-) ALPs, however, fail to yield myeloid cells upon transplantation into irradiated recipients. Moreover, ADAM17(-/-) ALPs yield fewer macrophages in vitro than control ALPs at high concentrations of macrophage colony stimulating factor. Mice with hematopoietic-specific deletion of ADAM17 have normal numbers of myeloid and lymphoid progenitors and mature cells in vivo. These data demonstrate that ADAM17 limits CSF1R protein expression on hematopoietic progenitors, but that compensatory mechanisms prevent elevated CSF1R levels from altering lymphoid progenitor potential.

in vivo blocking of IL-7Rα signaling
Goossens, S., et al. (2015). "ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling" Nat Commun 6: 5794. PubMed

Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model.

in vivo blocking of IL-7Rα signaling
Le Saout, C., et al. (2014). "Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis" PLoS Pathog 10(3): e1003976. PubMed

HIV infection and the associated chronic immune activation alter T cell homeostasis leading to CD4 T cell depletion and CD8 T cell expansion. The mechanisms behind these outcomes are not totally defined and only partially explained by the direct cytopathic effect of the virus. In this manuscript, we addressed the impact of lymphopenia and chronic exposure to IFN-alpha on T cell homeostasis. In a lymphopenic murine model, this interaction led to decreased CD4 counts and CD8 T cell expansion in association with an increase in the Signal Transducer and Activator of Transcription 1 (STAT1) levels resulting in enhanced CD4 T cell responsiveness to IFN-alpha. Thus, in the setting of HIV infection, chronic stimulation of this pathway could be detrimental for CD4 T cell homeostasis.

in vivo blocking of IL-7Rα signaling, Flow Cytometry
McKinstry, K. K., et al. (2014). "Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2" Nat Commun 5: 5377. PubMed

It is unclear how CD4 T-cell memory formation is regulated following pathogen challenge, and when critical mechanisms act to determine effector T-cell fate. Here, we report that following influenza infection most effectors require signals from major histocompatibility complex class II molecules and CD70 during a late window well after initial priming to become memory. During this timeframe, effector cells must produce IL-2 or be exposed to high levels of paracrine or exogenously added IL-2 to survive an otherwise rapid default contraction phase. Late IL-2 promotes survival through acute downregulation of apoptotic pathways in effector T cells and by permanently upregulating their IL-7 receptor expression, enabling IL-7 to sustain them as memory T cells. This new paradigm defines a late checkpoint during the effector phase at which cognate interactions direct CD4 T-cell memory generation.

in vivo blocking of IL-7Rα signaling
Devarajan, P., et al. (2014). "Opposing effects of CTLA4 insufficiency on regulatory versus conventional T cells in autoimmunity converge on effector memory in target tissue" J Immunol 193(9): 4368-4380. PubMed

Quantitative variations in CTLA4 expression, because of genetic polymorphisms, are associated with various human autoimmune conditions, including type 1 diabetes (T1D). Extensive studies have demonstrated that CTLA4 is not only essential for the suppressive role of regulatory T cells (T(reg)) but also required for intrinsic control of conventional T (T(conv)) cells. We report that a modest insufficiency of CTLA4 in mice, which mimics the effect of some human CTLA4 genetic polymorphisms, accompanied by a T1D-permissive MHC locus, was sufficient to induce juvenile-onset diabetes on an otherwise T1D-resistant genetic background. Reduction in CTLA4 levels had an unanticipated effect in promoting Treg function both in vivo and in vitro. It led to an increase in T(reg) memory in both lymphoid and nonlymphoid target tissue. Conversely, modulating CTLA4 by either RNA interference or Ab blockade promoted conventional effector memory T cell formation in the T(conv) compartment. The CD4(+) conventional effector memory T cells, including those within target tissue, produced IL-17 or IFN-gamma. Blocking IL-7 signaling reduced the Th17 autoimmune compartment but did not suppress the T1D induced by CTLA4 insufficiency. Enhanced effector memory formation in both T(conv) and T(reg) lineages may underpin the apparently dichotomized impact of CTLA4 insufficiency on autoimmune pathogenesis. Therefore, although the presence of CTLA4 plays a critical role in controlling homeostasis of T cells, its quantitative variation may impose diverse or even opposing effects on distinct lineages of T cells, an optimal sum of which is necessary for preservation of T cell immunity while suppressing tissue damage.

in vivo blocking of IL-7Rα signaling
Gratz, I. K., et al. (2013). "Cutting Edge: memory regulatory t cells require IL-7 and not IL-2 for their maintenance in peripheral tissues" J Immunol 190(9): 4483-4487. PubMed

Thymic Foxp3-expressing regulatory T cells are activated by peripheral self-antigen to increase their suppressive function, and a fraction of these cells survive as memory regulatory T cells (mTregs). mTregs persist in nonlymphoid tissue after cessation of Ag expression and have enhanced capacity to suppress tissue-specific autoimmunity. In this study, we show that murine mTregs express specific effector memory T cell markers and localize preferentially to hair follicles in skin. Memory Tregs express high levels of both IL-2Ralpha and IL-7Ralpha. Using a genetic-deletion approach, we show that IL-2 is required to generate mTregs from naive CD4(+) T cell precursors in vivo. However, IL-2 is not required to maintain these cells in the skin and skin-draining lymph nodes. Conversely, IL-7 is essential for maintaining mTregs in skin in the steady state. These results elucidate the fundamental biology of mTregs and show that IL-7 plays an important role in their survival in skin.

in vivo blocking of IL-7Rα signaling
Ashbaugh, J. J., et al. (2013). "IL7Ralpha contributes to experimental autoimmune encephalomyelitis through altered T cell responses and nonhematopoietic cell lineages" J Immunol 190(9): 4525-4534. PubMed

A mutation in the IL7Ralpha locus has been identified as a risk factor for multiple sclerosis (MS), a neurodegenerative autoimmune disease characterized by inflammation, demyelination, and axonal damage. IL7Ralpha has well documented roles in lymphocyte development and homeostasis, but its involvement in disease is largely understudied. In this study, we use the experimental autoimmune encephalomyelitis (EAE) model of MS to show that a less severe form of the disease results when IL7Ralpha expression is largely restricted to thymic tissue in IL7RTg(IL7R-/-) mice. Compared with wild-type (WT) mice, IL7RTg(IL7R-/-) mice exhibited reduced paralysis and myelin damage that correlated with dampened effector responses, namely decreased TNF production. Furthermore, treatment of diseased WT mice with neutralizing anti-IL7Ralpha Ab also resulted in significant improvement of EAE. In addition, chimeric mice were generated by bone marrow transplant to limit expression of IL7Ralpha to cells of either hematopoietic or nonhematopoietic origin. Mice lacking IL7Ralpha only on hematopoietic cells develop severe EAE, suggesting that IL7Ralpha expression in the nonhematopoietic compartment contributes to disease. Moreover, novel IL7Ralpha expression was identified on astrocytes and oligodendrocytes endogenous to the CNS. Chimeric mice that lack IL7Ralpha only on nonhematopoietic cells also develop severe EAE, which further supports the role of IL7Ralpha in T cell effector function. Conversely, mice that lack IL7Ralpha throughout both compartments are dramatically protected from disease. Taken together, these data indicate that multiple cell types use IL7Ralpha signaling in the development of EAE, and inhibition of this pathway should be considered as a new therapeutic avenue for MS.

Flow Cytometry
Satpathy, A. T., et al. (2013). "Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens" Nat Immunol 14(9): 937-948. PubMed

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.

in vivo blocking of IL-7Rα signaling
Chougnet, C. A., et al. (2011). "A major role for Bim in regulatory T cell homeostasis" J Immunol 186(1): 156-163. PubMed

25% of the CD4(+) T cell compartment by 6 mo of age. Additionally, accumulation of Treg in Bim-deficient mice occurred after the cells left the transitional recent thymic emigrant compartment. Mechanistically, we show that IL-2 drives preferential proliferation and accumulation of Bim(lo) Treg. Collectively, our data suggest that chronic stimulation by IL-2 leads to preferential expansion of Treg having low expression of Bim, which favors their survival and accumulation in aged hosts.”}” data-sheets-userformat=”{“2″:14851,”3”:{“1″:0},”4”:{“1″:2,”2″:16777215},”12″:0,”14”:{“1″:2,”2″:1521491},”15″:”Roboto, sans-serif”,”16″:12}”>We have previously shown that regulatory T cells (Treg) accumulate dramatically in aged animals and negatively impact the ability to control persistent infection. However, the mechanisms underlying the age-dependent accrual of Treg remain unclear. In this study, we show that Treg accumulation with age is progressive and likely not the result of increased thymic output, increased peripheral proliferation, or from enhanced peripheral conversion. Instead, we found that Treg from aged mice are more resistant to apoptosis than Treg from young mice. Although Treg from aged mice had increased expression of functional IL-7Ralpha, we found that IL-7R signaling was not required for maintenance of Treg in vivo. Notably, aged Treg exhibit decreased expression of the proapoptotic molecule Bim compared with Treg from young mice. Furthermore, in the absence of Bim, Treg accumulate rapidly, accounting for >25% of the CD4(+) T cell compartment by 6 mo of age. Additionally, accumulation of Treg in Bim-deficient mice occurred after the cells left the transitional recent thymic emigrant compartment. Mechanistically, we show that IL-2 drives preferential proliferation and accumulation of Bim(lo) Treg. Collectively, our data suggest that chronic stimulation by IL-2 leads to preferential expansion of Treg having low expression of Bim, which favors their survival and accumulation in aged hosts.

    • Immunology and Microbiology
    • ,
    Peyer's patch-involved gut microbiota facilitates anti-HBV immunity in mice.

    In Virus Research on 2 July 2023 by Li, Y., Zhong, S., et al.

    PubMed

    Gut microbiota is crucial for immune homeostasis and is associated with the prognosis of chronic hepatitis B infection. Peyer's patches (PPs), characterized by intestinal mucosa localization, are involved in the gut microbiota-mediated immune response. However, whether and how PPs orchestrate gut microbiota-modulated anti-hepatitis B virus (HBV) response remain elusive. This study aims to elucidate the role of PPs in gut microbiota-mediated anti-HBV adaptive immunity. We investigated the effects of gut microbiota and PPs on adaptive immune responses by transcriptomic, phenotypic, and functional analyzes from an HBV mouse model with gut commensal microbiota and PP-depleting interventions. Depletion of gut microbiota impaired systemic adaptive immune responses, resulting in a delayed HBV antigen clearance. Differentially expressed genes analysis of PPs revealed that pathways related to adaptive immune responses were significantly downregulated in gut microbiota-deficient mice. Notably, the depletion of PPs could abolish gut microbiota-boosted intrahepatic HBV-specific T cell response, leading to a higher serum hepatitis B surface antigen level in mice. PPs orchestrate gut microbiota-mediated intrahepatic anti-HBV cellular immunity, underlining the significance of remote manipulating the "gut microbiota-PPs" axis for achieving optimum anti-HBV response. Copyright © 2023. Published by Elsevier B.V.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Stem Cells and Developmental Biology
    Dysregulated lung stroma drives emphysema exacerbation by potentiating resident lymphocytes to suppress an epithelial stem cell reservoir.

    In Immunity on 14 March 2023 by Wang, C., Hyams, B., et al.

    PubMed

    Aberrant tissue-immune interactions are the hallmark of diverse chronic lung diseases. Here, we sought to define these interactions in emphysema, a progressive disease characterized by infectious exacerbations and loss of alveolar epithelium. Single-cell analysis of human emphysema lungs revealed the expansion of tissue-resident lymphocytes (TRLs). Murine studies identified a stromal niche for TRLs that expresses Hhip, a disease-variant gene downregulated in emphysema. Stromal-specific deletion of Hhip induced the topographic expansion of TRLs in the lung that was mediated by a hyperactive hedgehog-IL-7 axis. 3D immune-stem cell organoids and animal models of viral exacerbations demonstrated that expanded TRLs suppressed alveolar stem cell growth through interferon gamma (IFNγ). Finally, we uncovered an IFNγ-sensitive subset of human alveolar stem cells that was preferentially lost in emphysema. Thus, we delineate a stromal-lymphocyte-epithelial stem cell axis in the lung that is modified by a disease-variant gene and confers host susceptibility to emphysema. Published by Elsevier Inc.

    • In Vivo
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mass Spec
    • ,
    • Mus musculus (House mouse)
    Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade.

    In Cancer Discovery on 2 December 2022 by Krisnawan, V. E., Belle, J. I., et al.

    PubMed

    The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711. ©2022 American Association for Cancer Research.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Impact of MyD88, Microbiota, and Location on Type 1 and Type 3 Innate Lymphoid Cells during Toxoplasma gondii Infection.

    In ImmunoHorizons on 12 September 2022 by Snyder, L. M., Belmares-Ortega, J., et al.

    PubMed

    Toxoplasma gondii induces strong IFN-γ-based immunity. Innate lymphoid cells (ILC), in particular ILC1, are an important innate source of this protective cytokine during infection. Our objective was to determine how MyD88-dependent signaling influences ILC function during peroral compared with i.p. infection with T. gondii. MyD88 +/+ and MyD88 -/- mice were orally inoculated with ME49 cysts, and small intestinal lamina propria ILC were assessed using flow cytometry. We observed T-bet+ ILC1, retinoic acid-related orphan receptor γt+ ILC3, and a population of T-bet+retinoic acid-related orphan receptor γt+ double-positive ILC. In MyD88 -/- mice, IFN-γ-producing T-bet+ ILC1 frequencies were reduced compared with wild-type. Treatment of MyD88 -/- mice with an antibiotic mixture to deplete microflora reduced IFN-γ+ ILC1 frequencies. To examine ILC responses outside of the mucosal immune system, peritoneal exudate cells were collected from wild-type and knockout mice after i.p. inoculation with ME49 cysts. In this compartment, ILC were highly polarized to the ILC1 subset that increased significantly and became highly positive for IFN-γ over the course of infection. Increased ILC1 was associated with expression of the Ki67 cell proliferation marker, and the response was driven by IL-12p40. In the absence of MyD88, IFN-γ expression by ILC1 was not maintained, but proliferation remained normal. Collectively, these data reveal new aspects of ILC function that are influenced by location of infection and shaped further by MyD88-dependent signaling.Copyright © 2022 The Authors.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Delta-like 4-Derived Notch Signals Differentially Regulate Thymic Generation of Skin-Homing CCR10+NK1.1+ Innate Lymphoid Cells at Neonatal and Adult Stages.

    In The Journal of Immunology on 1 September 2022 by Song, E. H., Xu, M., et al.

    PubMed

    The thymus is a primary lymphoid organ for T cell development. Increasing evidence found that the thymus is also an important site for development of innate lymphoid cells (ILCs). ILCs generated in thymi acquire unique homing properties that direct their localization into barrier tissues such as the skin and intestine, where they help local homeostasis. Mechanisms underlying the developmental programming of unique tissue-homing properties of ILCs are poorly understood. We report in this article that thymic stroma-derived Notch signaling is differentially involved in thymic generation of a population of NK1.1+ group 1 ILCs (ILC1s) with the CCR10+ skin-homing property in adult and neonatal mice. We found that thymic generation of CCR10+NK1.1+ ILC1s is increased in T cell-deficient mice at adult, but not neonatal, stages, supporting the notion that a large number of developing T cells interfere with signals required for generation of CCR10+NK1.1+ ILC1s. In an in vitro differentiation assay, increasing Notch signals promotes generation of CCR10+NK1.1+ ILC1s from hematopoietic progenitors. Knockout of the Notch ligand Delta-like 4 in thymic stroma impairs generation of CCR10+NK1.1+ ILC1s in adult thymi, but development of CCR10+NK1.1+ ILC1s in neonatal thymi is less dependent on Delta-like 4-derived Notch signals. Mechanistically, the Notch signaling is required for proper expression of the IL-7R CD127 on thymic NK1.1+ ILC1s, and deficiency of CD127 also impairs thymic generation of CCR10+NK1.1+ ILC1s at adult, but not perinatal, stages. Our findings advanced understanding of regulatory mechanisms of thymic innate lymphocyte development. Copyright © 2022 by The American Association of Immunologists, Inc.

    • Immunology and Microbiology
    • ,
    • Mus musculus (House mouse)
    Type 1 Innate Lymphoid Cells Protect Mice from Acute Liver Injury via Interferon-γ Secretion for Upregulating Bcl-xL Expression in Hepatocytes.

    In Immunity on 14 January 2020 by Nabekura, T., Riggan, L., et al.

    PubMed

    Although type 1 innate lymphoid cells (ILC1s) have been originally found as liver-resident ILCs, their pathophysiological role in the liver remains poorly investigated. Here, we demonstrated that carbon tetrachloride (CCl4) injection into mice activated ILC1s, but not natural killer (NK) cells, in the liver. Activated ILC1s produced interferon-γ (IFN-γ) and protected mice from CCl4-induced acute liver injury. IFN-γ released from activated ILC1s promoted the survival of hepatocytes through upregulation of Bcl-xL. An activating NK receptor, DNAM-1, was required for the optimal activation and IFN-γ production of liver ILC1s. Extracellular adenosine triphosphate accelerated interleukin-12-driven IFN-γ production by liver ILC1s. These findings suggest that ILC1s are critical for tissue protection during acute liver injury. Copyright © 2019 Elsevier Inc. All rights reserved.

    • Immunology and Microbiology
    Tissue-Resident Group 2 Innate Lymphoid Cells Differentiate by Layered Ontogeny and In Situ Perinatal Priming.

    In Immunity on 18 June 2019 by Schneider, C., Lee, J., et al.

    PubMed

    The perinatal period is a critical window for distribution of innate tissue-resident immune cells within developing organs. Despite epidemiologic evidence implicating the early-life environment in the risk for allergy, temporally controlled lineage tracing of group 2 innate lymphoid cells (ILC2s) during this period remains unstudied. Using complementary fate-mapping approaches and reporters for ILC2 activation, we show that ILC2s appeared in multiple organs during late gestation like tissue macrophages, but, unlike the latter, a majority of peripheral ILC2 pools were generated de novo during the postnatal window. This period was accompanied by systemic ILC2 priming and acquisition of tissue-specific transcriptomes. Although perinatal ILC2s were variably replaced across tissues with age, the dramatic increases in tissue ILC2s following helminth infection were mediated through local expansion independent of de novo generation by bone marrow hematopoiesis. We provide comprehensive temporally controlled fate mapping of an innate lymphocyte subset with notable nuances as compared to tissue macrophage ontogeny. Copyright © 2019 Elsevier Inc. All rights reserved.

    • Biochemistry and Molecular biology
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4+ T Cells.

    In Cell Reports on 2 April 2019 by Previte, D. M., Martins, C. P., et al.

    PubMed

    Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed by CD4+ T cells and tempers their homeostatic expansion. Because CD4+ T cell proliferation is tightly coupled to bioenergetics, we investigate the role of LAG-3 in modulating naive CD4+ T cell metabolism. LAG-3 deficiency enhances the metabolic profile of naive CD4+ T cells by elevating levels of mitochondrial biogenesis. In vivo, LAG-3 blockade partially restores expansion and the metabolic phenotype of wild-type CD4+ T cells to levels of Lag3-/- CD4+ T cells, solidifying that LAG-3 controls these processes. Lag3-/- CD4+ T cells also demonstrate greater signal transducer and activator of transcription 5 (STAT5) activation, enabling resistance to interleukin-7 (IL-7) deprivation. These results implicate this pathway as a target of LAG-3-mediated inhibition. Additionally, enhancement of STAT5 activation, as a result of LAG-3 deficiency, contributes to greater activation potential in these cells. These results identify an additional mode of regulation elicited by LAG-3 in controlling CD4+ T cell responses. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Immunology and Microbiology
    Transplantation preferentially induces a KLRG-1lo CD127hi differentiation program in antigen-specific CD8+ T cells.

    In Transplant Immunology on 1 October 2018 by Bozeman, A. M., Laurie, S. J., et al.

    PubMed

    Models of infection have shaped our understanding of programmed memory T cell differentiation, yet whether these models apply to memory programming in the context of transplantation has yet to be defined. Previous work has identified differences in the response of antigen-specific CD8+ T cells to cognate antigen based on the environment in which the antigen is presented. Thus, we hypothesized that programming of antigen specific CD8+ T cells responding to graft and pathogen may be dissimilar. Here we find that antigen-specific CD8+ T cells primed by a skin graft contract faster than those primed by gammaherpesvirus (gHV), yet are able to expand more rapidly upon rechallenge. Moreover, graft-primed antigen-specific CD8+ T cells exhibited higher frequencies of cells secreting IL-2 and demonstrate lower expression of KLRG-1, which are qualities suggestive of increased recall potential. Additionally, the expression of CD127 at a memory time point suggests graft-elicited CD8+ antigen specific T cells are maintained in a less terminally-differentiated state compared to gHV-elicited CD8+ antigen specific T cells, despite fewer cells being present at that time point. Taken together, our findings suggest that the surface marker expression and functional profiles of T cells depends on the priming conditions and may be used to predict immunologic risk following transplantation after traditional allosensitization or heterologous immune priming. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    The common γ-chain cytokine IL-7 promotes immunopathogenesis during fungal asthma.

    In Mucosal Immunology on 1 September 2018 by Reeder, K. M., Dunaway, C. W., et al.

    PubMed

    Asthmatics sensitized to fungi are reported to have more severe asthma, yet the immunopathogenic pathways contributing to this severity have not been identified. In a pilot assessment of human asthmatics, those subjects sensitized to fungi demonstrated elevated levels of the common γ-chain cytokine IL-7 in lung lavage fluid, which negatively correlated with the lung function measurement PC20. Subsequently, we show that IL-7 administration during experimental fungal asthma worsened lung function and increased the levels of type 2 cytokines (IL-4, IL-5, IL-13), proallergic chemokines (CCL17, CCL22) and proinflammatory cytokines (IL-1α, IL-1β). Intriguingly, IL-7 administration also increased IL-22, which we have previously reported to drive immunopathogenic responses in experimental fungal asthma. Employing IL22CreR26ReYFP reporter mice, we identified γδ T cells, iNKT cells, CD4 T cells and ILC3s as sources of IL-22 during fungal asthma; however, only iNKT cells were significantly increased after IL-7 administration. IL-7-induced immunopathogenesis required both type 2 and IL-22 responses. Blockade of IL-7Rα in vivo resulted in attenuated IL-22 production, lower CCL22 levels, decreased iNKT cell, CD4 T-cell and eosinophil recruitment, yet paradoxically increased dynamic lung resistance. Collectively, these results suggest a complex role for IL-7 signaling in allergic fungal asthma.

    • Immunology and Microbiology
    • ,
    • Neuroscience
    IL-15 supports the generation of protective lung-resident memory CD4 T cells.

    In Mucosal Immunology on 1 May 2018 by Strutt, T. M., Dhume, K., et al.

    PubMed

    Tissue-resident memory T cells (TRM) provide optimal defense at the sites of infection, but signals regulating their development are unclear, especially for CD4 T cells. Here we identify two distinct pathways that lead to the generation of CD4 TRM in the lungs following influenza infection. The TRM are transcriptionally distinct from conventional memory CD4 T cells and share a gene signature with CD8 TRM. The CD4 TRM are superior cytokine producers compared with conventional memory cells, can protect otherwise naive mice against a lethal influenza challenge, and display functional specialization by inducing enhanced inflammatory responses from dendritic cells compared with conventional memory cells. Finally, we demonstrate than an interleukin (IL)-2-dependent and a novel IL-2-independent but IL-15-dependent pathway support the generation of cohorts of lung TRM.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    The immunocytokine L19-IL2: An interplay between radiotherapy and long-lasting systemic anti-tumour immune responses.

    In Oncoimmunology on 11 April 2018 by Rekers, N. H., Olivo Pimentel, V., et al.

    PubMed

    Recently, we have shown that the administration of the tumour-targeted antibody-based immunocytokine L19-IL2 after radiotherapy (RT) resulted in synergistic anti-tumour effect. Here we show that RT and L19-IL2 can activate a curative abscopal effect, with a long-lasting immunological memory. Ionizing radiation (single dose of 15Gy, 5 × 2Gy or 5 × 5Gy) was delivered to primary C51 colon tumour-bearing immunocompetent mice in combination with L19-IL2 and response of secondary non-irradiated C51 or CT26 colon tumours was evaluated. 15Gy + L19-IL2 triggered a curative (20%) abscopal effect, which was T cell dependent. Moreover, 10Gy + L19-IL2 treated and cured mice were re-injected after 150 days with C51 tumour cells and tumour uptake was assessed. Age-matched controls (matrigel injected mice treated with 10Gy + L19-IL2, mice cured after treatment with surgery + L19-IL2 and mice cured after high dose RT 40Gy + vehicle) were included. Several immunological parameters in blood, tumours, lymph nodes and spleens were investigated. Treatment with 10Gy + L19-IL2 resulted in long-lasting immunological memory, associated with CD44+CD127+ expression on circulating T cells. This combination treatment can induce long-lasting curative abscopal responses, and therefore it has also great potential for treatment of metastatic disease. Preclinical findings have led to the initiation of a phase I clinical trial (NCT02086721) in our institute investigating stereotactic ablative radiotherapy with L19-IL2 in patients with oligometastatic solid tumours.

    • Immunology and Microbiology
    PD-1 Controls Tonic Signaling and Lymphopenia-Induced Proliferation of T Lymphocytes.

    In Frontiers in Immunology on 28 October 2017 by Ellestad, K. K., Lin, J., et al.

    PubMed

    Recovery of the T lymphocyte compartment within a lymphopenic host by lymphopenia-induced proliferation (LIP) is regulated by inter- and intraclonal competition for limited resources, including homeostatic cytokines and peptide:MHC (pMHC) complexes with which the TCR can interact at least weakly to yield a tonic signal. Importantly, the process of LIP can synergize with other factors that promote T cell activation to drive inflammatory disease. While reconstitution of the lymphoid compartment of immune deficient Rag-/- mice by transfer of wild-type hematopoietic stem cells (HSC) does not generally result in an overt disease phenotype, transfer of HSC deficient in expression of the co-inhibitory molecule PD-1 results in severe systemic autoimmunity driven by newly generated T cells that emerge from the thymus into the periphery and undergo LIP. Importantly, autoimmunity does not appear to depend on a response to exogenous (i.e., gut flora-derived) antigens. PD-1 is well known to be upregulated during T cell activation in response to cognate antigens, but it is unclear whether PD-1 has a role in controlling LIP of T cells in the absence of cognate antigen, i.e., in response to tonic pMHC. We examined whether PD-1 controls LIP of newly generated T cells by controlling the response to tonic pMHC or the homeostatic cytokine IL-7. We found that PD-1-deficient T cells have a proliferative advantage over WT T cells during LIP and this effect is MHC-II dependent and independent of IL-7Rα signaling. Furthermore, our data suggest that signals through IL-7Rα can be dispensable for LIP and may instead be of increased importance for T cell survival in conditions of high competition for limited pMHC (e.g., post-LIP, in a lymphoreplete host). We hypothesize that autoimmunity post-PD-1-/- HSC transplant is the result of an overzealous T cell response to normally tonic self-pMHC precipitated by the synergy of LIP and PD-1 deficiency. Furthermore, potentiation of TCR signals in response to normally tonic self-pMHC may contribute to the success of PD-1 blockade in cancer immunotherapy.

    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Interleukin-7 Availability Is Maintained by a Hematopoietic Cytokine Sink Comprising Innate Lymphoid Cells and T Cells.

    In Immunity on 18 July 2017 by Martin, C. E., Spasova, D. S., et al.

    PubMed

    Interleukin-7 (IL-7) availability determines the size and proliferative state of the resting T cell pool. However, the mechanisms that regulate steady-state IL-7 amounts are unclear. Using experimental lymphopenic mouse models and IL-7-induced homeostatic proliferation to measure IL-7 availability in vivo, we found that radioresistant cells were the source of IL-7 for both CD4+ and CD8+ T cells. Hematopoietic lineage cells, although irrelevant as a source of IL-7, were primarily responsible for limiting IL-7 availability via their expression of IL-7R. Unexpectedly, innate lymphoid cells were found to have a potent influence on IL-7 amounts in the primary and secondary lymphoid tissues. These results demonstrate that IL-7 homeostasis is achieved through consumption by multiple subsets of innate and adaptive immune cells. Copyright © 2017 Elsevier Inc. All rights reserved.

    • Immunology and Microbiology
    Interleukin-7 produced by intestinal epithelial cells in response to Citrobacter rodentium infection plays a major role in innate immunity against this pathogen.

    In Infection and Immunity on 1 August 2015 by Zhang, W., Du, J. Y., et al.

    PubMed

    Interleukin-7 (IL-7) engages multiple mechanisms to overcome chronic viral infections, but the role of IL-7 in bacterial infections, especially enteric bacterial infections, remains unclear. Here we characterized the previously unexplored role of IL-7 in the innate immune response to the attaching and effacing bacterium Citrobacter rodentium. C. rodentium infection induced IL-7 production from intestinal epithelial cells (IECs). IL-7 production from IECs in response to C. rodentium was dependent on gamma interferon (IFN-γ)-producing NK1.1(+) cells and IL-12. Treatment with anti-IL-7Rα antibody during C. rodentium infection resulted in a higher bacterial burden, enhanced intestinal damage, and greater weight loss and mortality than observed with the control IgG treatment. IEC-produced IL-7 was only essential for protective immunity against C. rodentium during the first 6 days after infection. An impaired bacterial clearance upon IL-7Rα blockade was associated with a significant decrease in macrophage accumulation and activation in the colon. Moreover, C. rodentium-induced expansion and activation of intestinal CD4(+) lymphoid tissue inducer (LTi) cells was completely abrogated by IL-7Rα blockade. Collectively, these data demonstrate that IL-7 is produced by IECs in response to C. rodentium infection and plays a critical role in the protective immunity against this intestinal attaching and effacing bacterium. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling.

    In Nature Communications on 7 January 2015 by Goossens, S., Radaelli, E., et al.

    PubMed

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model.

    • Immunology and Microbiology
    • ,
    • Neuroscience
    Opposing effects of CTLA4 insufficiency on regulatory versus conventional T cells in autoimmunity converge on effector memory in target tissue.

    In The Journal of Immunology on 1 November 2014 by Devarajan, P., Miska, J., et al.

    PubMed

    Quantitative variations in CTLA4 expression, because of genetic polymorphisms, are associated with various human autoimmune conditions, including type 1 diabetes (T1D). Extensive studies have demonstrated that CTLA4 is not only essential for the suppressive role of regulatory T cells (T(reg)) but also required for intrinsic control of conventional T (T(conv)) cells. We report that a modest insufficiency of CTLA4 in mice, which mimics the effect of some human CTLA4 genetic polymorphisms, accompanied by a T1D-permissive MHC locus, was sufficient to induce juvenile-onset diabetes on an otherwise T1D-resistant genetic background. Reduction in CTLA4 levels had an unanticipated effect in promoting Treg function both in vivo and in vitro. It led to an increase in T(reg) memory in both lymphoid and nonlymphoid target tissue. Conversely, modulating CTLA4 by either RNA interference or Ab blockade promoted conventional effector memory T cell formation in the T(conv) compartment. The CD4(+) conventional effector memory T cells, including those within target tissue, produced IL-17 or IFN-γ. Blocking IL-7 signaling reduced the Th17 autoimmune compartment but did not suppress the T1D induced by CTLA4 insufficiency. Enhanced effector memory formation in both T(conv) and T(reg) lineages may underpin the apparently dichotomized impact of CTLA4 insufficiency on autoimmune pathogenesis. Therefore, although the presence of CTLA4 plays a critical role in controlling homeostasis of T cells, its quantitative variation may impose diverse or even opposing effects on distinct lineages of T cells, an optimal sum of which is necessary for preservation of T cell immunity while suppressing tissue damage. Copyright © 2014 by The American Association of Immunologists, Inc.

    • Immunology and Microbiology
    Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis.

    In PLoS Pathogens on 1 March 2014 by Le Saout, C., Hasley, R. B., et al.

    PubMed

    HIV infection and the associated chronic immune activation alter T cell homeostasis leading to CD4 T cell depletion and CD8 T cell expansion. The mechanisms behind these outcomes are not totally defined and only partially explained by the direct cytopathic effect of the virus. In this manuscript, we addressed the impact of lymphopenia and chronic exposure to IFN-α on T cell homeostasis. In a lymphopenic murine model, this interaction led to decreased CD4 counts and CD8 T cell expansion in association with an increase in the Signal Transducer and Activator of Transcription 1 (STAT1) levels resulting in enhanced CD4 T cell responsiveness to IFN-α. Thus, in the setting of HIV infection, chronic stimulation of this pathway could be detrimental for CD4 T cell homeostasis.

    • Immunology and Microbiology
    Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens.

    In Nature Immunology on 1 September 2013 by Satpathy, A. T., Briseño, C. G., et al.

    PubMed

    Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.

    • Immunology and Microbiology
    Interleukin-7 enhances the Th1 response to promote the development of Sjögren's syndrome-like autoimmune exocrinopathy in mice.

    In Arthritis and Rheumatism on 1 August 2013 by Jin, J. O., Kawai, T., et al.

    PubMed

    Although elevated interleukin-7 (IL-7) levels have been reported in patients with primary Sjögren's syndrome (SS), the role of IL-7 in this disease remains unclear. We undertook this study to characterize the previously unexplored role of IL-7 in the development and onset of primary SS using the C57BL/6.NOD-Aec1Aec2 (B6.NOD-Aec) mouse model, which recapitulates human primary SS. For gain-of-function studies, recombinant IL-7 or control phosphate buffered saline was injected intraperitoneally (IP) into 12-week-old B6.NOD-Aec mice for 8 weeks. For loss-of-function studies, anti-IL-7 receptor α-chain (anti-IL-7Rα) antibody or its isotype control IgG was administered IP into 16-week-old B6.NOD-Aec mice. Salivary flow measurement, histologic and flow cytometric analysis of salivary glands, and serum antinuclear antibody assay were performed to assess various disease parameters. Administration of exogenous IL-7 accelerated the development of primary SS, whereas blockade of IL-7Rα signaling almost completely abolished the development of primary SS, based on salivary gland inflammation and apoptosis, autoantibody production, and secretory dysfunction. IL-7 positively regulated interferon-γ (IFNγ)-producing Th1 and CD8+ T cells in the salivary glands without affecting IL-17. Moreover, IL-7 enhanced the expression of CXCR3 ligands in a T cell- and IFNγ-dependent manner. Accordingly, IFNγ induced a human salivary gland epithelial cell line to produce CXCR3 ligands. IL-7 also increased the level of tumor necrosis factor α, another Th1-associated cytokine that can facilitate tissue destruction and inflammation. IL-7 plays a pivotal pathogenic role in SS, which is underpinned by an enhanced Th1 response and IFNγ/CXCR3 ligand-mediated lymphocyte infiltration of target organs. These results suggest that targeting the IL-7 pathway may be a potential future strategy for preventing and treating SS. Copyright © 2013 by the American College of Rheumatology.