InVivoMAb anti-mouse/human KLRG-1

Catalog #BE0201
Product Citations:
2
Clone:
2F1
Reactivities:
Mouse, Human

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The 2F1 monoclonal antibody reacts with the mouse and human killer cell lectin-like receptor G1 (KLRG1), a type II membrane glycoprotein that exists as a homodimer of glycosylated 30-38 kDa subunits. KLRG1 is preferentially expressed by NK cells but is also expressed by a subset of T cells. Studies in mice suggest that KLRG1 expression is regulated by MHC class I molecules and that KLRG1 regulates the effector function and the development of NK and T cells.

Specifications

Isotype Syrian hamster IgG
Recommended Isotype Control(s) InVivoMAb polyclonal Syrian hamster IgG
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen IL-2 activated C57BL/6 mouse NK cells
Reported Applications Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/μg)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_10949054
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
Flow Cytometry
Togher, S., et al. (2015). "FoxO3 is a negative regulator of primary CD8+ T-cell expansion but not of memory formation" Immunol Cell Biol 93(2): 120-125. PubMed

The generation of CD8(+) T cells by vaccination represents an important goal for protective immunity to infectious pathogens. It is thus of utmost importance to understand the mechanisms involved in the generation of optimal CD8(+) T-cell responses. The forkhead box O (FoxO) family of transcription factors has a crucial role in cellular responses to environmental change. Among them, FoxO3 is critically involved in the regulation of cellular proliferation, apoptosis, metabolism and stress resistance to withdrawal of nutrients or cytokine growth factors. Since the role of FoxO3 has been poorly studied in the immune system, here we have evaluated its involvement in the CD8(+) T-cell response. We observe that CD8(+) T cells deficient for FoxO3 undergo a significantly greater primary expansion than their wild-type (WT) counterparts in response to both infectious (vaccinia virus) or non-infectious (non-replicating cellular vaccine) immunogens, resulting in a larger cohort of cells following contraction. These survivors, however, do not undergo a greater secondary response than WT. Taken together, our data show that FoxO3 is a negative regulator of the CD8(+) T-cell response, specifically during the primary expansion.

Flow Cytometry
Kim, M. H., et al. (2015). "Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut" Immunity 43(1): 107-119. PubMed

Distinct groups of innate lymphoid cells (ILCs) such as ILC1, ILC2, and ILC3 populate the intestine, but how these ILCs develop tissue tropism for this organ is unclear. We report that prior to migration to the intestine ILCs first undergo a “switch” in their expression of homing receptors from lymphoid to gut homing receptors. This process is regulated by mucosal dendritic cells and the gut-specific tissue factor retinoic acid (RA). This change in homing receptors is required for long-term population and effector function of ILCs in the intestine. Only ILC1 and ILC3, but not ILC2, undergo the RA-dependent homing receptor switch in gut-associated lymphoid tissues. In contrast, ILC2 acquire gut homing receptors in a largely RA-independent manner during their development in the bone marrow and can migrate directly to the intestine. Thus, distinct programs regulate the migration of ILC subsets to the intestine for regulation of innate immunity.

Flow Cytometry
Becker, P. D., et al. (2015). "Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory" Vaccine 33(37): 4691-4698. PubMed

A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension.

Flow Cytometry
Kastenmuller, W., et al. (2011). "Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction" J Immunol 187(6): 3186-3197. PubMed

Regulatory T cells (Treg) are key players in maintaining immune homeostasis but have also been shown to regulate immune responses against infectious pathogens. Therefore, Treg are a promising target for modulating immune responses to vaccines to improve their efficacy. Using a viral vector system, we found that Treg act on the developing immune response early postinfection by reducing the extent of dendritic cell costimulatory molecule expression. Due to this change and the lower IL-2 production that results, a substantial fraction of CD8(+) effector T cells lose CD25 expression several days after activation. Surprisingly, such Treg-dependent limitations in IL-2 signaling by Ag-activated CD8(+) T cells prevent effector differentiation without interfering with memory cell formation. In this way, Treg fine-tune the numbers of effector T cells generated while preserving the capacity for a rapid recall response upon pathogen re-exposure. This selective effect of Treg on a subpopulation of CD8(+) T cells indicates that although manipulation of the Treg compartment might not be optimal for prophylactic vaccinations, it can be potentially exploited to optimize vaccine efficacy for therapeutic interventions.

Flow Cytometry
Mackerness, K. J., et al. (2010). "Pronounced virus-dependent activation drives exhaustion but sustains IFN-gamma transcript levels" J Immunol 185(6): 3643-3651. PubMed

During many chronic infections, the responding CD8 T cells become exhausted as they progressively lose their ability to elaborate key effector functions. Unlike prototypic memory CD8 cells, which rapidly synthesize IFN-gamma following activation, severely exhausted T cells fail to produce this effector molecule. Nevertheless, the ontogeny of exhausted CD8 T cells, as well as the underlying mechanisms that account for their functional inactivation, remains ill defined. We have used cytokine reporter mice, which mark the transcription of IFN-gamma mRNA by the expression of Thy1.1, to decipher how activation events during the early stages of a chronic infection dictate the development of exhaustion. We show that virus-specific CD8 T cells clearly respond during the early stages of chronic lymphocytic choriomeningitis virus infection, and that this early T cell response is more pronounced than that initially observed in acutely infected hosts. Thus, exhausted CD8 T cells appear to emerge from populations of potently activated precursors. Unlike acute infections, which result in massive expansion of the responding T cells, there is a rapid attenuation of further expansion during chronic infections. The exhausted T cells that subsequently emerge in chronically infected hosts are incapable of producing the IFN-gamma protein. Surprisingly, high levels of the IFN-gamma transcript are still present in exhausted cells, demonstrating that ablation of IFN-gamma production by exhausted cells is not due to transcriptional silencing. Thus, posttranscription regulatory mechanisms likely disable this effector module.

    • FC/FACS
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    • ,
    • Mass Spec
    • ,
    • Mus musculus (House mouse)
    Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade.

    In Cancer Discovery on 2 December 2022 by Krisnawan, V. E., Belle, J. I., et al.

    PubMed

    The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711. ©2022 American Association for Cancer Research.

    • Immunology and Microbiology
    The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo.

    In Journal of Virology on 1 April 2011 by Lubinski, J. M., Lazear, H. M., et al.

    PubMed

    Herpes simplex virus 1 (HSV-1) glycoprotein E (gE) mediates cell-to-cell spread and functions as an IgG Fc receptor (FcγR) that blocks the Fc domain of antibody targeting the virus or infected cell. Efforts to assess the functions of the HSV-1 FcγR in vivo have been hampered by difficulties in preparing an FcγR-negative strain that is relatively intact for spread. Here we report the FcγR and spread phenotypes of NS-gE264, which is a mutant strain that has four amino acids inserted after gE residue 264. The virus is defective in IgG Fc binding yet causes zosteriform disease in the mouse flank model that is only minimally reduced compared with wild-type and the rescue strains. The presence of zosteriform disease suggests that NS-gE264 spread functions are well maintained. The HSV-1 FcγR binds the Fc domain of human, but not murine IgG; therefore, to assess FcγR functions in vivo, mice were passively immunized with human IgG antibody to HSV. When antibody was inoculated intraperitoneally 20 h prior to infection or shortly after virus reached the dorsal root ganglia, disease severity was significantly reduced in mice infected with NS-gE264, but not in mice infected with wild-type or rescue virus. Studies of C3 knockout mice and natural killer cell-depleted mice demonstrated that the HSV-1 FcγR blocked both IgG Fc-mediated complement activation and antibody-dependent cellular cytotoxicity. Therefore, the HSV-1 FcγR promotes immune evasion from IgG Fc-mediated activities and likely contributes to virulence at times when antibody is present, such as during recurrent infections.