InVivoMAb anti-LCMV nucleoprotein

Catalog #BE0106
Product Citations:
25
Clone:
VL-4
Reactivities:
Virus

$164.00 - $4,280.00

Choose an Option...
  • 100 mg - $4,280.00
  • 50 mg - $3,024.00
  • 25 mg - $2,009.00
  • 5 mg - $600.00
  • 1 mg - $164.00
  • Custom Amount (Quotes Only)
In stock
Only %1 left

Product Details

The VL-4 antibody reacts with lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP), a 63 kDa structural protein. This antibody was generated by fusion of spleen cells of an LCMV strain WE immunized F1 rat with the YM3 myeloma cell line. This antibody has been shown to stain LCMV-infected cell internally with no surface staining. This antibody does not react with vaccinia, vesicular stomatitis or influenza virus-infected cells in the case of internal or surface staining.

Specifications

Isotype Rat IgG2a, κ
Recommended Isotype Control(s) InVivoMAb rat IgG2a isotype control, anti-trinitrophenol
Recommended Dilution Buffer InVivoPure pH 7.0 Dilution Buffer
Conjugation This product is unconjugated. Conjugation is available via our Antibody Conjugation Services.
Immunogen LCMV strain WE
Reported Applications Immunofluorescence
Flow cytometry
Formulation PBS, pH 7.0
Contains no stabilizers or preservatives
Endotoxin <2EU/mg (<0.002EU/μg)
Determined by LAL gel clotting assay
Purity >95%
Determined by SDS-PAGE
Sterility 0.2 µm filtration
Production Purified from cell culture supernatant in an animal-free facility
Purification Protein G
RRID AB_10949017
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.
Flow Cytometry
Pritzl, C. J., et al. (2015). "A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections" J Immunol 194(9): 4339-4349. PubMed

The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.

Flow Cytometry
Ng, C. T., et al. (2015). "Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection" Cell Host Microbe 17(5): 653-661. PubMed

Although type I interferon (IFN-I) is thought to be beneficial against microbial infections, persistent viral infections are characterized by high interferon signatures suggesting that IFN-I signaling may promote disease pathogenesis. During persistent lymphocytic choriomeningitis virus (LCMV) infection, IFNalpha and IFNbeta are highly induced early after infection, and blocking IFN-I receptor (IFNAR) signaling promotes virus clearance. We assessed the specific roles of IFNbeta versus IFNalpha in controlling LCMV infection. While blockade of IFNbeta alone does not alter early viral dissemination, it is important in determining lymphoid structure, lymphocyte migration, and anti-viral T cell responses that lead to accelerated virus clearance, approximating what occurs during attenuation of IFNAR signaling. Comparatively, blockade of IFNalpha was not associated with improved viral control, but with early dissemination of virus. Thus, despite their use of the same receptor, IFNbeta and IFNalpha have unique and distinguishable biologic functions, with IFNbeta being mainly responsible for promoting viral persistence.

Flow Cytometry
Sullivan, B. M., et al. (2015). "Early virus-host interactions dictate the course of a persistent infection" PLoS Pathog 11(1): e1004588. PubMed

Many persistent viral infections are characterized by a hypofunctional T cell response and the upregulation of negative immune regulators. These events occur days after the initiation of infection. However, the very early host-virus interactions that determine the establishment of viral persistence remain poorly uncharacterized. Here we show that to establish persistence, LCMV must counteract an innate anti-viral immune response within eight hours after infection. While the virus triggers cytoplasmic RNA sensing pathways soon after infection, LCMV counteracts this pathway through a rapid increase in viral titers leading to a dysfunctional immune response characterized by a high cytokine and chemokine expression profile. This altered immune environment allows for viral replication in the splenic white pulp as well as infection of immune cells essential to an effective anti-viral immune response. Our findings illustrate how early events during infection critically dictate the characteristics of the immune response to infection and facilitate either virus control and clearance or persistence.

Immunofluorescence
Beura, L. K., et al. (2015). "Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution" J Leukoc Biol 97(2): 217-225. PubMed

Vaccines are desired that maintain abundant memory T cells at nonlymphoid sites of microbial exposure, where they may be anatomically positioned for immediate pathogen interception. Here, we test the impact of antigen persistence on mouse CD8 and CD4 T cell distribution and differentiation by comparing responses to infections with different strains of LCMV that cause either acute or chronic infections. We used in vivo labeling techniques that discriminate between T cells present within tissues and abundant populations that fail to be removed from vascular compartments, despite perfusion. LCMV persistence caused up to approximately 30-fold more virus-specific CD8 T cells to distribute to the lung compared with acute infection. Persistent infection also maintained mucosal-homing alpha4beta7 integrin expression, higher granzyme B expression, alterations in the expression of the TRM markers CD69 and CD103, and greater accumulation of virus-specific CD8 T cells in the large intestine, liver, kidney, and female reproductive tract. Persistent infection also increased LCMV-specific CD4 T cell quantity in mucosal tissues and induced maintenance of CXCR4, an HIV coreceptor. This study clarifies the relationship between viral persistence and CD4 and CD8 T cell distribution and mucosal phenotype, indicating that chronic LCMV infection magnifies T cell migration to nonlymphoid tissues.

Flow Cytometry, Immunofluorescence
Herz, J., et al. (2015). "Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells" J Exp Med 212(8): 1153-1169. PubMed

Several viruses can infect the mammalian nervous system and induce neurological dysfunction. Adoptive immunotherapy is an approach that involves administration of antiviral T cells and has shown promise in clinical studies for the treatment of peripheral virus infections in humans such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus, among others. In contrast, clearance of neurotropic infections is particularly challenging because the central nervous system (CNS) is relatively intolerant of immunopathological reactions. Therefore, it is essential to develop and mechanistically understand therapies that noncytopathically eradicate pathogens from the CNS. Here, we used mice persistently infected from birth with lymphocytic choriomeningitis virus (LCMV) to demonstrate that therapeutic antiviral T cells can completely purge the persistently infected brain without causing blood-brain barrier breakdown or tissue damage. Mechanistically, this is accomplished through a tailored release of chemoattractants that recruit antiviral T cells, but few pathogenic innate immune cells such as neutrophils and inflammatory monocytes. Upon arrival, T cells enlisted the support of nearly all brain-resident myeloid cells (microglia) by inducing proliferation and converting them into CD11c(+) antigen-presenting cells (APCs). Two-photon imaging experiments revealed that antiviral CD8(+) and CD4(+) T cells interacted directly with CD11c(+) microglia and induced STAT1 signaling but did not initiate programmed cell death. We propose that noncytopathic CNS viral clearance can be achieved by therapeutic antiviral T cells reliant on restricted chemoattractant production and interactions with apoptosis-resistant microglia.

Flow Cytometry
Seo, Y. J. and B. Hahm. (2014). "Sphingosine analog AAL-R promotes activation of LCMV-infected dendritic cells" Viral Immunol 27(2): 82-86. PubMed

Sphingosine analogs display diverse immunoregulatory activities with curative potential in autoimmune diseases and viral infections. Recently, the sphingosine analog AAL-R was shown to increase DC activation upon TLR7 stimulation. Here, we investigated the effect of AAL-R on activation of dendritic cells (DCs) infected by lymphocytic choriomeningitis virus (LCMV). Concomitant treatment of LCMV-infected DCs with AAL-R enhanced DC maturation and DC ability to stimulate and expand antiviral CD8(+) T cells. Importantly, AAL-R’s stimulatory activity was abrogated in type I interferon (IFN) receptor-deficient DCs following LCMV infection. In support of this observation, AAL-R increased type I IFN production from DCs infected with LCMV. Taken together, the sphingosine analog could directly act on DCs to promote defensive host DC responses to the viral invasion via type I IFN signaling.

Flow Cytometry, Immunofluorescence
Nayak, D., et al. (2013). "Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system" PLoS Pathog 9(5): e1003395. PubMed

Viral infections of central nervous system (CNS) often trigger inflammatory responses that give rise to a wide range of pathological outcomes. The CNS is equipped with an elaborate network of innate immune sentinels (e.g. microglia, macrophages, dendritic cells) that routinely serve as first responders to these infections. The mechanisms that underlie the dynamic programming of these cells following CNS viral infection remain undefined. To gain insights into this programming, we utilized a combination of genomic and two-photon imaging approaches to study a pure innate immune response to a noncytopathic virus (lymphocytic choriomeningitis virus) as it established persistence in the brain. This enabled us to evaluate how global gene expression patterns were translated into myeloid cell dynamics following infection. Two-photon imaging studies revealed that innate myeloid cells mounted a vigorous early response to viral infection characterized by enhanced vascular patrolling and a complete morphological transformation. Interestingly, innate immune activity subsided over time and returned to a quasi-normal state as the virus established widespread persistence in the brain. At the genomic level, early myeloid cell dynamics were associated with massive changes in CNS gene expression, most of which declined over time and were linked to type I interferon signaling (IFN-I). Surprisingly, in the absence of IFN-I signaling, almost no differential gene expression was observed in the nervous system despite increased viral loads. In addition, two-photon imaging studies revealed that IFN-I receptor deficient myeloid cells were unresponsive to viral infection and remained in a naive state. These data demonstrate that IFN-I engages non-redundant programming responsible for nearly all innate immune activity in the brain following a noncytopathic viral infection. This Achilles’ heel could explain why so many neurotropic viruses have acquired strategies to suppress IFN-I.

    • Immunology and Microbiology
    • ,
    Structural basis for antibody-mediated neutralization of lymphocytic choriomeningitis virus.

    In Cell Chemical Biology on 20 April 2023 by Moon-Walker, A., Zhang, Z., et al.

    PubMed

    The mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a globally distributed zoonotic pathogen that can be lethal in immunocompromised patients and can cause severe birth defects if acquired during pregnancy. The structure of the trimeric surface glycoprotein, essential for entry, vaccine design, and antibody neutralization, remains unknown. Here, we present the cryoelectron microscopy (cryo-EM) structure of the LCMV surface glycoprotein (GP) in its trimeric pre-fusion assembly both alone and in complex with a rationally engineered monoclonal neutralizing antibody termed 18.5C-M28 (M28). Additionally, we show that passive administration of M28, either as a prophylactic or therapeutic, protects mice from LCMV clone 13 (LCMVcl13) challenge. Our study illuminates not only the overall structural organization of LCMV GP and the mechanism for its inhibition by M28 but also presents a promising therapeutic candidate to prevent severe or fatal disease in individuals who are at risk of infection by a virus that poses a threat worldwide. Copyright © 2023 Elsevier Ltd. All rights reserved.

    • Immunology and Microbiology
    Flow cytometry and immunohistochemistry of the mouse dural meninges for immunological and virological assessments.

    In STAR Protocols on 17 March 2023 by Roussel-Queval, A., Rebejac, J., et al.

    PubMed

    The highly vascularized meninges protect the surface of the central nervous system and contain a dense network of immune cells controlling neuroinfection and neuroinflammation. Here, we present techniques for the immunological and virological assessment of mouse dural meninges. We describe steps for immunophenotyping including meninges extraction and digestion, immunostaining, and flow cytometry. We then describe viral assessment upon lymphocytic choriomeningitis virus infection including steps for fixation of the meninges in the skull, whole-mount immunohistochemistry, and confocal imaging. For complete details on the use and execution of this protocol, please refer to Rebejac et al. (2022).1. Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

    Topoisomerase II as a Novel Antiviral Target against Panarenaviral Diseases.

    In Viruses on 30 December 2022 by Afowowe, T. O., Sakurai, Y., et al.

    PubMed

    Although many arenaviruses cause severe diseases with high fatality rates each year, treatment options are limited to off-label use of ribavirin, and a Food and Drug Administration (FDA)-approved vaccine is not available. To identify novel therapeutic candidates against arenaviral diseases, an RNA polymerase I-driven minigenome (MG) expression system for Lassa virus (LASV) was developed and optimized for high-throughput screening (HTS). Using this system, we screened 2595 FDA-approved compounds for inhibitors of LASV genome replication and identified multiple compounds including pixantrone maleate, a topoisomerase II inhibitor, as hits. Other tested topoisomerase II inhibitors also suppressed LASV MG activity. These topoisomerase II inhibitors also inhibited Junin virus (JUNV) MG activity and effectively limited infection by the JUNV Candid #1 strain, and siRNA knockdown of both topoisomerases (IIα and IIβ) restricted JUNV replication. These results suggest that topoisomerases II regulate arenavirus replication and can serve as molecular targets for panarenaviral replication inhibitors.

    • COVID-19
    • ,
    • Immunology and Microbiology
    Limited extent and consequences of pancreatic SARS-CoV-2 infection.

    In Cell Reports on 15 March 2022 by van der Heide, V., Jangra, S., et al.

    PubMed

    Concerns that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), may cause new-onset diabetes persist in an evolving research landscape, and precise risk assessment is hampered by, at times, conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets practically all pancreatic cell types. Importantly, the infection remains highly circumscribed and largely non-cytopathic and, despite a high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, challenge the proposition that in vivo targeting of β cells by SARS-CoV-2 precipitates new-onset diabetes. Whether restricted pancreatic damage and immunological alterations accrued by COVID-19 increase cumulative diabetes risk, however, remains to be evaluated. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Biochemistry and Molecular biology
    • ,
    • Genetics
    A small stem-loop-forming region within the 3'-UTR of a nonpolyadenylated LCMV mRNA promotes translation.

    In The Journal of Biological Chemistry on 1 February 2022 by Hashizume, M., Takashima, A., et al.

    PubMed

    Mammalian arenavirus (mammarenavirus) mRNAs are characterized by 5'-capped and 3'-nonpolyadenylated untranslated regions (UTRs). We previously reported that the nonpolyadenylated 3'-UTR of viral mRNA (vmRNA), which is derived from the noncoding intergenic region (IGR), regulates viral protein levels at the posttranscriptional level. This finding provided the basis for the development of novel live-attenuated vaccines (LAVs) against human pathogenic mammarenaviruses. Detailed information about the roles of specific vmRNA 3'-UTR sequences in controlling translation efficiency will help in understanding the mechanism underlying attenuation by IGR manipulations. Here, we characterize the roles of cis-acting mRNA regulatory sequences of a prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in modulating translational efficiency. Using in vitro transcribed RNA mimics encoding a reporter gene, we demonstrate that the 3'-UTR of nucleoprotein (NP) mRNA without a poly(A) tail promotes translation in a poly(A)-binding protein-independent manner. Comparison with the 3'-UTR of glycoprotein precursor mRNA, which is translated less efficiently, revealed that a 10-nucleotide sequence proximal to the NP open reading frame is essential for promoting translation. Modification of this 10-nucleotide sequence also impacted reporter gene expression in recombinant LCMV. Our findings will enable rational design of the 10-nucleotide sequence to further improve our mammarenavirus LAV candidates and to develop a novel LCMV vector capable of controlling foreign gene expression. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

    • Immunology and Microbiology
    CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor.

    In Viruses on 3 September 2021 by Takenaga, T., Zhang, Z., et al.

    PubMed

    Lassa virus (LASV)-a member of the family Arenaviridae-causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 μM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.

    • IHC
    • ,
    • Cancer Research
    • ,
    • Immunology and Microbiology
    Viral vector-mediated reprogramming of the fibroblastic tumor stroma sustains curative melanoma treatment.

    In Nature Communications on 5 August 2021 by Ring, S. S., Cupovic, J., et al.

    PubMed

    The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells. © 2021. The Author(s).

    • Biochemistry and Molecular biology
    • ,
    • Cell Biology
    • ,
    • Immunology and Microbiology
    Suppressive neutrophils require PIM1 for metabolic fitness and survival during chronic viral infection.

    In Cell Reports on 25 May 2021 by Volberding, P. J., Xin, G., et al.

    PubMed

    The immune response to a chronic viral infection is uniquely tailored to balance viral control and immunopathology. The role of myeloid cells in shaping the response to chronic viral infection, however, is poorly understood. We perform single-cell RNA sequencing of myeloid cells during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection to address this question. Our analysis identifies a cluster of suppressive neutrophils that is enriched in chronic infection. Furthermore, suppressive neutrophils highly express the gene encoding Proviral integration site for Moloney murine leukemia virus-1 (PIM1), a kinase known to promote mitochondrial fitness and cell survival. Pharmacological inhibition of PIM1 selectively diminishes suppressive neutrophil-mediated immunosuppression without affecting the function of monocytic myeloid-derived suppressor cells (M-MDSCs). Decreased accumulation of suppressive neutrophils leads to increased CD8 T cell function and viral control. Mechanistically, PIM kinase activity is required for maintaining fused mitochondrial networks in suppressive neutrophils, but not in M-MDSCs, and loss of PIM kinase function causes increased suppressive neutrophil apoptosis. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

    • In Vivo
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection.

    In Immunity on 9 March 2021 by Xu, W., Snell, L. M., et al.

    PubMed

    Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.Copyright © 2021 Elsevier Inc. All rights reserved.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    Live-attenuated lymphocytic choriomeningitis virus-based vaccines for active immunotherapy of HPV16-positive cancer.

    In Oncoimmunology on 15 September 2020 by Schmidt, S., Bonilla, W. V., et al.

    PubMed

    Infection with human papillomavirus (HPV) is associated with a variety of cancer types and limited therapy options. Therapeutic cancer vaccines targeting the HPV16 oncoproteins E6 and E7 have recently been extensively explored as a promising immunotherapy approach to drive durable antitumor T cell immunity and induce effective tumor control. With the goal to achieve potent and lasting antitumor T cell responses, we generated a novel lymphocytic choriomeningitis virus (LCMV)-based vaccine, TT1-E7E6, targeting HPV16 E6 and E7. This replication-competent vector was stably attenuated using a three-segmented viral genome packaging strategy. Compared to wild-type LCMV, TT1-E7E6 demonstrated significantly reduced viremia and CNS immunopathology. Intravenous vaccination of mice with TT1-E7E6 induced robust expansion of HPV16-specific CD8+ T cells producing IFN-γ, TNF-α and IL-2. In the HPV16 E6 and E7-expressing TC-1 tumor model, mice immunized with TT1-E7E6 showed significantly delayed tumor growth or complete tumor clearance accompanied with prolonged survival. Tumor control by TT1-E7E6 was also achieved in established large-sized tumors in this model. Furthermore, a combination of TT1-E7E6 with anti-PD-1 therapy led to enhanced antitumor efficacy with complete tumor regression in the majority of tumor-bearing mice that were resistant to anti-PD-1 treatment alone. TT1-E7E6 vector itself did not exhibit oncolytic properties in TC-1 cells, while the antitumor effect was associated with the accumulation of HPV16-specific CD8+ T cells with reduced PD-1 expression in the tumor tissues. Together, our results suggest that TT1-E7E6 is a promising therapeutic vaccine for HPV-positive cancers. © 2020 The Author(s). Published with license by Taylor Francis Group, LLC.

    • Immunology and Microbiology
    Chronic virus infection drives CD8 T cell-mediated thymic destruction and impaired negative selection.

    In Proceedings of the National Academy of Sciences of the United States of America on 10 March 2020 by Elsaesser, H. J., Mohtashami, M., et al.

    PubMed

    Chronic infection provokes alterations in inflammatory and suppressive pathways that potentially affect the function and integrity of multiple tissues, impacting both ongoing immune control and restorative immune therapies. Here we demonstrate that chronic lymphocytic choriomeningitis virus infection rapidly triggers severe thymic depletion, mediated by CD8 T cell-intrinsic type I interferon (IFN) and signal transducer and activator of transcription 2 (Stat2) signaling. Occurring temporal to T cell exhaustion, thymic cellularity reconstituted despite ongoing viral replication, with a rapid secondary thymic depletion following immune restoration by anti-programmed death-ligand 1 (PDL1) blockade. Therapeutic hematopoietic stem cell transplant (HSCT) during chronic infection generated new antiviral CD8 T cells, despite sustained virus replication in the thymus, indicating an impairment in negative selection. Consequently, low amounts of high-affinity self-reactive T cells also escaped the thymus following HSCT during chronic infection. Thus, by altering the stringency and partially impairing negative selection, the host generates new virus-specific T cells to replenish the fight against the chronic infection, but also has the potentially dangerous effect of enabling the escape of self-reactive T cells.

    • IHC
    • ,
    • Immunology and Microbiology
    • ,
    • Neuroscience
    Neuroinvasion and cognitive impairment in comorbid alcohol dependence and chronic viral infection: An initial investigation.

    In Journal of Neuroimmunology on 15 October 2019 by Loftis, J. M., Taylor, J., et al.

    PubMed

    Viruses that invade the central nervous system (CNS) can cause neuropsychiatric impairments. Similarly, chronic alcohol exposure can induce inflammatory responses that alter brain function. However, the effects of a chronic viral infection and comorbid alcohol use on neuroinflammation and behavior are not well-defined. We investigated the role of heavy alcohol intake in regulating inflammatory responses and behavioral signs of cognitive impairments in mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13. LCMV-infected mice exposed to alcohol had increased peripheral inflammation and impaired cognitive function (as indicated by performance on the novel object recognition test). Initial findings suggest that brain region-specific dysregulation of microglial response to viral infection may contribute to cognitive impairments in the context of heavy alcohol use. Published by Elsevier B.V.

    • IHC-WM
    • ,
    • Mus musculus (House mouse)
    • ,
    • Immunology and Microbiology
    Panicle-Shaped Sympathetic Architecture in the Spleen Parenchyma Modulates Antibacterial Innate Immunity.

    In Cell Reports on 25 June 2019 by Ding, X., Wang, H., et al.

    PubMed

    The nervous system can modulate the body's immunity. However, how efferent neural signals reach out to control the local immunity remains incompletely understood. Here, we report the ImmuView procedure for whole-tissue 3D assessment of neural innervations in the intact immune organs of adult mice. This advanced imaging technique revealed an intricate, panicle-shaped sympathetic architecture in the parenchyma of the spleen but not other immune organs, including the lymph nodes, Peyer's patch, and thymus. In contrast, we observed the minimal presence of parasympathetic innervations in the parenchyma of all of the classic immune organs examined. Specific deletion of the TrkA receptor abolishes the sympathetic architecture in the spleen and such genetic ablation significantly enhanced the spleen antibacterial innate immunity. Moreover, the sympathetic neurotransmitter norepinephrine could inhibit the LPS-elicited innate immunity cell-intrinsically via β2-adrenergic receptor signaling. This study exemplifies the key link that specifically connects the efferent sympathetic signal with the spleen innate immunity.Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

    • Cancer Research
    • ,
    • Immunology and Microbiology
    MicroRNA-155 Expression Is Enhanced by T-cell Receptor Stimulation Strength and Correlates with Improved Tumor Control in Melanoma.

    In Cancer Immunology Research on 1 June 2019 by Martinez-Usatorre, A., Sempere, L. F., et al.

    PubMed

    microRNAs are short noncoding RNAs that regulate protein expression posttranscriptionally. We previously showed that miR-155 promotes effector CD8+ T-cell responses. However, little is known about the regulation of miR-155 expression. Here, we report that antigen affinity and dose determine miR-155 expression in CD8+ T cells. In B16 tumors expressing a low-affinity antigen ligand, tumor-specific infiltrating CD8+ T cells showed variable miR-155 expression, whereby high miR-155 expression was associated with more cytokine-producing cells and tumor control. Moreover, anti-PD-1 treatment led to both increased miR-155 expression and tumor control by specific CD8+ T cells. In addition, miR-155 overexpression enhanced exhausted CD8+ T-cell persistence in the LCMV cl13 chronic viral infection model. In agreement with these observations in mouse models, miR-155 expression in human effector memory CD8+ T cells positively correlated with their frequencies in tumor-infiltrated lymph nodes of melanoma patients. Low miR-155 target gene signature in tumors was associated with prolonged overall survival in melanoma patients. Altogether, these results raise the possibility that high miR-155 expression in CD8+ tumor-infiltrating T cells may be a surrogate marker of the relative potency of in situ antigen-specific CD8+ T-cell responses. ©2019 American Association for Cancer Research.

    • Immunology and Microbiology
    Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity.

    In Nature Immunology on 1 April 2019 by Rua, R., Lee, J. Y., et al.

    PubMed

    Tissue macrophages have an embryonic origin and can be replenished in some tissues under steady-state conditions by blood monocytes. However, little is known about the residency and properties of infiltrating monocytes after an inflammatory challenge. The meninges of the central nervous system (CNS) are populated by a dense network of macrophages that act as resident immune sentinels. Here we show that, following lymphocytic choriomeningitis virus infection, resident meningeal macrophages (MMs) acquired viral antigen and interacted directly with infiltrating cytotoxic T lymphocytes, which led to macrophage depletion. Concurrently, the meninges were infiltrated by inflammatory monocytes that engrafted the meningeal niche and remained in situ for months after viral clearance. This engraftment led to interferon-γ-dependent functional changes in the pool of MMs, including loss of bacterial and immunoregulatory sensors. Collectively, these data indicate that peripheral monocytes can engraft the meninges after an inflammatory challenge, imprinting the compartment with long-term defects in immune function.

    • Immunology and Microbiology
    • ,
    • Neuroscience
    Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory.

    In Nature Immunology on 1 February 2018 by Beura, L. K., Mitchell, J. S., et al.

    PubMed

    CD8+ T cell immunosurveillance dynamics influence the outcome of intracellular infections and cancer. Here we used two-photon intravital microscopy to visualize the responses of CD8+ resident memory T cells (TRM cells) within the reproductive tracts of live female mice. We found that mucosal TRM cells were highly motile, but paused and underwent in situ division after local antigen challenge. TRM cell reactivation triggered the recruitment of recirculating memory T cells that underwent antigen-independent TRM cell differentiation in situ. However, the proliferation of pre-existing TRM cells dominated the local mucosal recall response and contributed most substantially to the boosted secondary TRM cell population. We observed similar results in skin. Thus, TRM cells can autonomously regulate the expansion of local immunosurveillance independently of central memory or proliferation in lymphoid tissue.

    • Immunology and Microbiology
    Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses.

    In PLoS Pathogens on 1 February 2018 by Iwasaki, M., Minder, P., et al.

    PubMed

    Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans.

    • Immunology and Microbiology
    Resistance of human plasmacytoid dendritic CAL-1 cells to infection with lymphocytic choriomeningitis virus (LCMV) is caused by restricted virus cell entry, which is overcome by contact of CAL-1 cells with LCMV-infected cells.

    In Virology on 1 November 2017 by Iwasaki, M., Sharma, S. M., et al.

    PubMed

    Plasmacytoid dendritic cells (pDCs), a main source of type I interferon in response to viral infection, are an early cell target during lymphocytic choriomeningitis virus (LCMV) infection, which has been associated with the LCMV's ability to establish chronic infections. Human blood-derived pDCs have been reported to be refractory to ex vivo LCMV infection. In the present study we show that human pDC CAL-1 cells are refractory to infection with cell-free LCMV, but highly susceptible to infection with recombinant LCMVs carrying the surface glycoprotein of VSV, indicating that LCMV infection of CAL-1 cells is restricted at the cell entry step. Co-culture of uninfected CAL-1 cells with LCMV-infected HEK293 cells enabled LCMV to infect CAL-1 cells. This cell-to-cell spread required direct cell-cell contact and did not involve exosome pathway. Our findings indicate the presence of a novel entry pathway utilized by LCMV to infect pDC. Copyright © 2017. Published by Elsevier Inc.

    • Immunology and Microbiology
    Semi-Functional Quantitative Flow Cytometry Assay for Lymphocytic Choriomeningitis Virus Titration.

    In Immune Network on 1 October 2017 by Ban, Y. H. & Ha, S. J.

    PubMed

    Quantitative PCR and plaque assay are powerful virological techniques used to measure the load of defective or infectious virus in mouse and human. However, these methods display limitations such as cross contamination and long run-time. Here, we describe a novel technique termed as semi-functional quantitative flow cytometry (SFQF) for the accurate estimation of the quantity of infectious lymphocytic choriomeningitis virus (LCMV). LCMV titration method using flow cytometry was previously developed but has technical shortcomings, owing to the less optimized parameters such as cell overgrowth, plate scale, and detection threshold. Therefore, we first established optimized conditions for SFQF assay using LCMV nucleoprotein (NP)-specific antibody to evaluate the threshold of the virus detection range in the plaque assay. We subsequently demonstrated that the optimization of the method increased the sensitivity of virus detection. We revealed several new advantages of SFQF assay, which overcomes some of the previously contentious points, and established an upgraded version of the previously reported flow cytometric titration assay. This method extends the detection scale to the level of single cell, allowing extension of its application for in vivo detection of infected cells and their phenotypic analysis. Thus, SFQF assay may serve as an alternative analytical tool for ensuring the reliability of LCMV titration and can be used with other types of viruses using target-specific antibodies.

    • Immunology and Microbiology
    The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells.

    In The Journal of Experimental Medicine on 19 September 2016 by Chorny, A., Casas-Recasens, S., et al.

    PubMed

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation-related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell-independent and T cell-dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. © 2016 Chorny et al.

1 2