Naïve T cells switch to one-carbon metabolism upon activation

Tags

  • Category: Articles

Marcia C. Haigis's group from the Department of Cell Biology at Harvard Medical School have discovered that CD4 T cell activation requires a unique program of mitochondrial biogenesisis.

Using mass spectrometry, the authors investigated protein dynamics during T cell activation both in vitro and in vivo. They identified substantial remodeling of the mitochondrial proteome which generated mitochondria with highly induced one carbon metabolism fed by serine.

Using an in vitro model of T cell activation and genetic knock-down of serine hydroxymethyltransferase (SHMT2) as well as a mouse model consisting of adoptive transfer of wild-type T cells and T cells with knock-down of SHMT2 the authors found that genetic inhibition of SHMT2 impaired T cell survival in culture and antigen-specific T cell abundance in vivo. This research defines a program of mitochondrial proteome remodeling and biogenesis which is critical for T cell survival and proliferation.

To accomplish this research, the authors used Bio X Cell's anti-mouse CD3ε (clone 145-2C11) and anti-mouse CD28 (clone 37.51) antibodies to stimulate the activation and proliferation of CD4 T cells in vitro.

See the article in Cell Metabolism: http://www.cell.com/cell-metabolism/abstract/S1550-4131(16)30293-5

Featured Products:

Back to News

Meet Our Leaders

Learn more about the team behind the gold standard in vivo antibodies.

Discover Bio X Cell

Learn more about our proven expertise and comprehensive antibody solutions.

See Our Impact

Discover the Bio X Cell Fund’s mission to improve the health of our community

Explore Our Latest

See our latest articles and whitepapers for scientific insights and ideas

Don’t see what you need?

Consult With Bio X Cell to Enable Your Next Breakthrough Discovery

Whether you need antibody customization or high-volume production, Bio X Cell is committed to advancing your therapeutic innovations.

Contact Us