InVivoPure pH 8.0T Dilution Buffer

Catalog #IPT080
Product Citations:
As low as $93.00


Choose an Option...
  • 50 ml - $93.00
In stock
Only %1 left

Product Details

InVivoPure™ dilution buffers are specifically formulated and tested to satisfy the stringent requirements for in vivo applications. They are extremely low in endotoxin, have been screened for murine pathogens, tested in animal models for toxicity and are formulated with respect to buffer composition and pH to satisfy the requirements of Bio X Cell’s antibodies.


Endotoxin <0.5 EU/mL (<0.0005EU/μL)
Endotoxin level is determined using an LAL gel clotting test
Sterility 0.2 μM filtered
Murine Pathogen Tests Mouse Norovirus: Negative
Mouse Parvovirus: Negative
Mouse Minute Virus: Negative
Mouse Hepatitis Virus: Negative
Reovirus Screen: Negative
Lymphocytic Choriomeningitis virus: Negative
Lactate Dehydrogenase-Elevating Virus: Negative
Mouse Rotavirus: Negative
Theiler’s Murine Encephalomyelitis: Negative
Ectromelia/Mousepox Virus: Negative
Hantavirus: Negative
Polyoma Virus: Negative
Mouse Adenovirus: Negative
Sendai Virus: Negative
Mycoplasma Pulmonis: Negative
Pneumonia Virus of Mice: Negative
Mouse Cytomegalovirus: Negative
K Virus: Negative
Toxicity Test Results Nontoxic and nonantigenic in animal models
Concentration 1X
Volume 50 ml
Composition 35 mM Na2HPO4 1.7 mM NaH2PO4 136 mM NaCl 0.01% TWEEN® 80
This buffer does not contain calcium, magnesium, phenol red, or preservatives such as azide.
Keep contents sterile. Open only in a biological safety cabinet.
Storage 4°C
    • Cardiovascular biology
    • ,
    • Immunology and Microbiology
    Programming Multifaceted Pulmonary T Cell Immunity by Combination Adjuvants.

    In Cell Reports Medicine on 22 September 2020 by Marinaik, C. B., Kingstad-Bakke, B., et al.


    Induction of protective mucosal T cell memory remains a formidable challenge to vaccinologists. Using a combination adjuvant strategy that elicits potent CD8 and CD4 T cell responses, we define the tenets of vaccine-induced pulmonary T cell immunity. An acrylic-acid-based adjuvant (ADJ), in combination with Toll-like receptor (TLR) agonists glucopyranosyl lipid adjuvant (GLA) or CpG, promotes mucosal imprinting but engages distinct transcription programs to drive different degrees of terminal differentiation and disparate polarization of TH1/TC1/TH17/TC17 effector/memory T cells. Combination of ADJ with GLA, but not CpG, dampens T cell receptor (TCR) signaling, mitigates terminal differentiation of effectors, and enhances the development of CD4 and CD8 TRM cells that protect against H1N1 and H5N1 influenza viruses. Mechanistically, vaccine-elicited CD4 T cells play a vital role in optimal programming of CD8 TRM and viral control. Taken together, these findings provide further insights into vaccine-induced multifaceted mucosal T cell immunity with implications in the development of vaccines against respiratorypathogens, including influenza virus and SARS-CoV-2. © 2020 The Author(s).